Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find gene variants that cause stent thrombosis in people with coronary artery disease

26.10.2011
In a first-of-its-kind study, researchers from Mount Sinai School of Medicine have discovered several gene variants contributing to early stent thrombosis (ST), a devastating and often deadly complication after coronary stent implantation in people with coronary artery disease.

The team found that three of these variants were associated with impaired sensitivity to the common blood thinner clopidogrel, and a fourth that affects a blood platelet receptor involved in platelet aggregation and clot formation. Analyzing these gene variants will help researchers identify patients at risk for early stent thrombosis and take measures to prevent it.

The data also provide a clinical and genomic score that indicates the best predictive accuracy for stent thrombosis risk. The findings are published in the Oct. 26 issue of the Journal of the American Medical Association.

Through a partnership with the Institut de Cardiologie at Pitié-Salpêtrière University Hospital in Paris, France, the research team evaluated the DNA of 123 patients who had undergone stent implantation and developed early ST while treated with dual antiplatelet therapy, which is a combination of aspirin and clopidogrel. The patient information was shared as part of ONline ASSIstance for Stent Thrombosis (ONASSIST), a nationwide web registry of patients in France.

Looking at 23 genetic variants previously associated with clopidogrel metabolism, platelet receptor function, and the control of blood clotting, they found four that were predictive risk factors of early ST. They also found that a low dose of clopidogrel in combination with a proton pump inhibitor, which is a drug to treat acid reflux, also increased the risk of early ST.

"Our research indicates that early stent thrombosis is strongly related to ineffectiveness of clopidogrel in certain patients," said Jean-Sebastien Hulot, MD PhD, Associate Professor of Medicine in the Division of Cardiology and Director Pharmacogenomics and Personalized Therapeutics at the Cardiovascular Research Center at Mount Sinai School of Medicine. "Now that we have a clearer understanding of the mechanism behind the development of stent thrombosis, we can take preventive measures to protect our patients from this deadly complication."

The research team compared the genetic code of people registered in the ONASSIST program with 246 coronary patients without early ST. They evaluated alleles, which are types of genetic variation that arise from mutations, of 23 genes. They found that CYP2C19*2 allele, which is commonly associated with loss of enzyme function, was highly prevalent in people presenting with early ST, as was the allele ABCB1 3435T, and both were infrequent in the control group. Two other alleles, CYP2C19*17 and ITGB3, were prevalent in the healthy control group but not in the early ST group indicating a protective effect. The scientists developed a genetic score where the more of these mutations that the patient had, the higher their risk for developing early ST. This risk was independent of clinical risk factors, including the use of proton pump inhibitors, acuteness of PCI, complexity of cardiac lesions, left ventricular heart function, and a high dose of clopidogrel. Only two of these risk factors– clopidogrel dose and proton pump inhibitor use – are modifiable in reducing risk for early ST. Eventually, the best prediction was achieved using the combination of both clinical and genetic factors. The authors conclude that this "clinico-genomic" approach could be useful prior to stent implantation to identify the patients with high-ST risk.

"We found that, independent of other clinical risk factors, these genetic factors play a critical role in the development of early ST," said Dr. Hulot. "Altogether, our data will help clinicians understand the factors contributing to early ST, and allow them to reduce the outcome risk to these patients. Understanding the genetic factors provides researchers with new drug targets for future study to reduce the genetic risk as well."

Mount Sinai's Cardiovascular Research Center plans to continue the partnership with the Institut de Cardiologie at Pitié-Salpêtrière University Hospital in Paris to develop an international cardiogenomic laboratory to better understand genetic risk factors associated with heart disease and treatments for heart disease to improve and better target clinical care for patients.

PCI is a minimally invasive technique used to treat patients with diseased coronary arteries caused by a buildup of plaque and cholesterol. During the procedure, a catheter is threaded through the body, typically from an artery in the groin to a blocked or occluded vessel in the heart. The occlusion is removed and a stent is often inserted to maintain flow within the blood vessel. Up to four percent of patients undergoing PCI experience early ST, which is deadly in 40 percent of those patients.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>