Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find gene variants that cause stent thrombosis in people with coronary artery disease

26.10.2011
In a first-of-its-kind study, researchers from Mount Sinai School of Medicine have discovered several gene variants contributing to early stent thrombosis (ST), a devastating and often deadly complication after coronary stent implantation in people with coronary artery disease.

The team found that three of these variants were associated with impaired sensitivity to the common blood thinner clopidogrel, and a fourth that affects a blood platelet receptor involved in platelet aggregation and clot formation. Analyzing these gene variants will help researchers identify patients at risk for early stent thrombosis and take measures to prevent it.

The data also provide a clinical and genomic score that indicates the best predictive accuracy for stent thrombosis risk. The findings are published in the Oct. 26 issue of the Journal of the American Medical Association.

Through a partnership with the Institut de Cardiologie at Pitié-Salpêtrière University Hospital in Paris, France, the research team evaluated the DNA of 123 patients who had undergone stent implantation and developed early ST while treated with dual antiplatelet therapy, which is a combination of aspirin and clopidogrel. The patient information was shared as part of ONline ASSIstance for Stent Thrombosis (ONASSIST), a nationwide web registry of patients in France.

Looking at 23 genetic variants previously associated with clopidogrel metabolism, platelet receptor function, and the control of blood clotting, they found four that were predictive risk factors of early ST. They also found that a low dose of clopidogrel in combination with a proton pump inhibitor, which is a drug to treat acid reflux, also increased the risk of early ST.

"Our research indicates that early stent thrombosis is strongly related to ineffectiveness of clopidogrel in certain patients," said Jean-Sebastien Hulot, MD PhD, Associate Professor of Medicine in the Division of Cardiology and Director Pharmacogenomics and Personalized Therapeutics at the Cardiovascular Research Center at Mount Sinai School of Medicine. "Now that we have a clearer understanding of the mechanism behind the development of stent thrombosis, we can take preventive measures to protect our patients from this deadly complication."

The research team compared the genetic code of people registered in the ONASSIST program with 246 coronary patients without early ST. They evaluated alleles, which are types of genetic variation that arise from mutations, of 23 genes. They found that CYP2C19*2 allele, which is commonly associated with loss of enzyme function, was highly prevalent in people presenting with early ST, as was the allele ABCB1 3435T, and both were infrequent in the control group. Two other alleles, CYP2C19*17 and ITGB3, were prevalent in the healthy control group but not in the early ST group indicating a protective effect. The scientists developed a genetic score where the more of these mutations that the patient had, the higher their risk for developing early ST. This risk was independent of clinical risk factors, including the use of proton pump inhibitors, acuteness of PCI, complexity of cardiac lesions, left ventricular heart function, and a high dose of clopidogrel. Only two of these risk factors– clopidogrel dose and proton pump inhibitor use – are modifiable in reducing risk for early ST. Eventually, the best prediction was achieved using the combination of both clinical and genetic factors. The authors conclude that this "clinico-genomic" approach could be useful prior to stent implantation to identify the patients with high-ST risk.

"We found that, independent of other clinical risk factors, these genetic factors play a critical role in the development of early ST," said Dr. Hulot. "Altogether, our data will help clinicians understand the factors contributing to early ST, and allow them to reduce the outcome risk to these patients. Understanding the genetic factors provides researchers with new drug targets for future study to reduce the genetic risk as well."

Mount Sinai's Cardiovascular Research Center plans to continue the partnership with the Institut de Cardiologie at Pitié-Salpêtrière University Hospital in Paris to develop an international cardiogenomic laboratory to better understand genetic risk factors associated with heart disease and treatments for heart disease to improve and better target clinical care for patients.

PCI is a minimally invasive technique used to treat patients with diseased coronary arteries caused by a buildup of plaque and cholesterol. During the procedure, a catheter is threaded through the body, typically from an artery in the groin to a blocked or occluded vessel in the heart. The occlusion is removed and a stent is often inserted to maintain flow within the blood vessel. Up to four percent of patients undergoing PCI experience early ST, which is deadly in 40 percent of those patients.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>