Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover novel therapy for Crohn’s disease

The Nutritional Immunology and Molecular Medicine Laboratory (NIMML) research team at Virginia Tech has discovered important new information on the efficacy of conjugated linoleic acid (CLA) in treating Crohn’s disease, a form of inflammatory bowel disease (IBD). CLA is a naturally occurring acid found in meat and dairy products known for its anti-cancer and immune modulatory properties.

In collaboration with the Division of Gastroenterology and Hepathology at University of North Carolina School of Medicine and the Wake Forest Medical Center, researchers found that Crohn’s patients who took supplementary CLA showed noticeable improvement.

“In our recent open label study of CLA as a supplement in study subjects with mild to moderate CD there was a marked improvement in disease activity and quality of life in 50% of the subjects. CLA was well tolerated by all of the study subjects. These findings are very encouraging and will need to be verified in a randomized controlled trial,” said Professor Kim L. Isaacs, a Professor of Gastroenterology at the University of North Carolina at Chapel Hill.

The two main manifestations of IBD—Crohn’s and ulcerative colitis—afflict over 1.4 million people in the United States. Symptoms include abdominal cramping, fever, fatigue, loss of appetite, skin and mouth ulcers, and diarrhea or constipation. In addition, the risk of developing colorectal cancer increases by about one percent yearly in IBD patients. Currently, there is no cure for Crohn’s disease and the exact causes of it aren’t fully understood.

CLA affords those afflicted with mild to moderate IBD an effective treatment without the unwanted side effects of many synthetic drugs. “Furthermore, we have demonstrated that probiotic bacteria can produce CLA locally and suppress colitis. Therefore, CLA can be administered directly in capsules or indirectly through CLA-producing probiotic bacteria,” said Dr. Raquel Hontecillas, an Assistant Professor of Immunology at NIMML.

NIMML strives to develop safer and more effective therapies for human chronic inflammatory diseases from Nature’s own medicine cabinet. To achieve this, NIMML uses advanced computational modeling in addition to mechanistic and clinical experimentation. “The validation of the anti-inflammatory actions of CLA in the gut is in line with our goal because CLA is a natural fatty acid found in milk and ruminant products. The fully integrated bioinformatics, nutrition and immunology experimentation capabilities of NIMML enable the acceleration of translational biomedical research from computational and mathematical modeling into the clinic. CLA is an example of an anti-inflammatory compound in a pipeline of naturally occurring and synthetic compounds (e.g., abscisic acid, eleostearic acid, terephthalanilides) with tremendous therapeutic and prophylactic potential as anti-inflammatories,” said Dr. Josep Bassaganya-Riera, a Professor of Immunology, principal investigator of this human clinical trial, and the Director of the NIMML and the Center for Modeling Immunity to Enteric Pathogens.

These findings, reported in the most recent edition of Clinical Nutrition1, were awarded the American College of Gastroenterology Presidential Poster of distinction for human clinical trials.

For more information about the pre-clinical and clinical capabilities of the Laboratory please visit the NIMML Web Portal at
This clinical study was funded by a grant from Cognis GmbH, Monheim, Germany to Josep Bassaganya-Riera. Cognis is now part of BASF, The Chemical Company.

1Bassaganya-Riera, J., R. Hontecillas, W.T. Horne, M. Sandridge, H. Herfarth, R. Bloomfeld, and K. Isaacs (2012) Conjugated linoleic modulates immune responses in patients with Mild to Moderately active Crohn’s disease. Clinical Nutrition. In Press.

About the Nutritional Immunology and Molecular Medicine Laboratory
The Nutritional Immunology and Molecular Medicine Laboratory (NIMML) conducts translational research aimed at developing novel therapeutic and prophylactic approaches for modulating immune and inflammatory responses. The group combines computational modeling, bioinformatics approaches, pre-clinical experimentation and human clinical studies to better understand the mechanisms of immune regulation at mucosal surfaces and ultimately accelerate the development of novel treatments for infectious and immune-mediated diseases In ad.dition, the NIMML team leads the NIAID-funded Center for Modeling Immunity to Enteric Pathogens (

About the Virginia Bioinformatics Institute
The Virginia Bioinformatics Institute at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science, combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today’s key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, immunology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world’s scientific, governmental, and wider communities.

Tiffany Trent

Tiffany Trent | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>