Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel therapy for Crohn’s disease

20.03.2012
The Nutritional Immunology and Molecular Medicine Laboratory (NIMML) research team at Virginia Tech has discovered important new information on the efficacy of conjugated linoleic acid (CLA) in treating Crohn’s disease, a form of inflammatory bowel disease (IBD). CLA is a naturally occurring acid found in meat and dairy products known for its anti-cancer and immune modulatory properties.

In collaboration with the Division of Gastroenterology and Hepathology at University of North Carolina School of Medicine and the Wake Forest Medical Center, researchers found that Crohn’s patients who took supplementary CLA showed noticeable improvement.

“In our recent open label study of CLA as a supplement in study subjects with mild to moderate CD there was a marked improvement in disease activity and quality of life in 50% of the subjects. CLA was well tolerated by all of the study subjects. These findings are very encouraging and will need to be verified in a randomized controlled trial,” said Professor Kim L. Isaacs, a Professor of Gastroenterology at the University of North Carolina at Chapel Hill.

The two main manifestations of IBD—Crohn’s and ulcerative colitis—afflict over 1.4 million people in the United States. Symptoms include abdominal cramping, fever, fatigue, loss of appetite, skin and mouth ulcers, and diarrhea or constipation. In addition, the risk of developing colorectal cancer increases by about one percent yearly in IBD patients. Currently, there is no cure for Crohn’s disease and the exact causes of it aren’t fully understood.

CLA affords those afflicted with mild to moderate IBD an effective treatment without the unwanted side effects of many synthetic drugs. “Furthermore, we have demonstrated that probiotic bacteria can produce CLA locally and suppress colitis. Therefore, CLA can be administered directly in capsules or indirectly through CLA-producing probiotic bacteria,” said Dr. Raquel Hontecillas, an Assistant Professor of Immunology at NIMML.

NIMML strives to develop safer and more effective therapies for human chronic inflammatory diseases from Nature’s own medicine cabinet. To achieve this, NIMML uses advanced computational modeling in addition to mechanistic and clinical experimentation. “The validation of the anti-inflammatory actions of CLA in the gut is in line with our goal because CLA is a natural fatty acid found in milk and ruminant products. The fully integrated bioinformatics, nutrition and immunology experimentation capabilities of NIMML enable the acceleration of translational biomedical research from computational and mathematical modeling into the clinic. CLA is an example of an anti-inflammatory compound in a pipeline of naturally occurring and synthetic compounds (e.g., abscisic acid, eleostearic acid, terephthalanilides) with tremendous therapeutic and prophylactic potential as anti-inflammatories,” said Dr. Josep Bassaganya-Riera, a Professor of Immunology, principal investigator of this human clinical trial, and the Director of the NIMML and the Center for Modeling Immunity to Enteric Pathogens.

These findings, reported in the most recent edition of Clinical Nutrition1, were awarded the American College of Gastroenterology Presidential Poster of distinction for human clinical trials.

For more information about the pre-clinical and clinical capabilities of the Laboratory please visit the NIMML Web Portal at http://www.nimml.org
.
This clinical study was funded by a grant from Cognis GmbH, Monheim, Germany to Josep Bassaganya-Riera. Cognis is now part of BASF, The Chemical Company.

1Bassaganya-Riera, J., R. Hontecillas, W.T. Horne, M. Sandridge, H. Herfarth, R. Bloomfeld, and K. Isaacs (2012) Conjugated linoleic modulates immune responses in patients with Mild to Moderately active Crohn’s disease. Clinical Nutrition. In Press.

About the Nutritional Immunology and Molecular Medicine Laboratory
The Nutritional Immunology and Molecular Medicine Laboratory (NIMML) conducts translational research aimed at developing novel therapeutic and prophylactic approaches for modulating immune and inflammatory responses. The group combines computational modeling, bioinformatics approaches, pre-clinical experimentation and human clinical studies to better understand the mechanisms of immune regulation at mucosal surfaces and ultimately accelerate the development of novel treatments for infectious and immune-mediated diseases http://www.nimml.org In ad.dition, the NIMML team leads the NIAID-funded Center for Modeling Immunity to Enteric Pathogens (http://www.modelingimmunity.org).

About the Virginia Bioinformatics Institute
The Virginia Bioinformatics Institute at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science, combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today’s key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, immunology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world’s scientific, governmental, and wider communities.

Contact:
Tiffany Trent
540-231-6822
ttrent@vbi.vt.edu

Tiffany Trent | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>