Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new mechanism behind resistance to cancer treatment

06.08.2012
Finding could lead to development of better therapies

Developing resistance to chemotherapy is a nearly universal, ultimately lethal consequence for cancer patients with solid tumors – such as those of the breast, prostate, lung and colon – that have metastasized, or spread, throughout the body.

A team of scientists led by Fred Hutchinson Cancer Research Center has discovered a key factor that drives this drug resistance – information that ultimately may be used to improve the effectiveness of therapy and buy precious time for patients with advanced cancer. They describe their findings online Aug. 5 in advance of print publication in Nature Medicine.

"Cancer cells inside the body live in a very complex environment or neighborhood. Where the tumor cell resides and who its neighbors are influence its response and resistance to therapy," said senior author Peter S. Nelson, M.D., a member of the Hutchinson Center's Human Biology Division.

Nelson and colleagues found that a type of normal, noncancerous cell that lives in cancer's neighborhood – the fibroblast – when exposed to chemotherapy sustains DNA damage that drives the production of a broad spectrum of growth factors that stimulate cancer growth. Under normal circumstances, fibroblasts help maintain the structural integrity of connective tissue, and they play a critical role in wound healing and collagen production.

Specifically, the researchers found that DNA-damaging cancer treatment coaxes fibroblasts to crank out a protein called WNT16B within the tumor neighborhood, or microenvironment, and that high levels of this protein enable cancer cells to grow, invade surrounding tissue and resist chemotherapy.

The researchers observed up to 30-fold increases in WNT production – a finding that was "completely unexpected," Nelson said. The WNT family of genes and proteins plays an important role in normal development and also in the development of some cancers but, until now, was not known to play a significant role in treatment resistance.

This discovery suggests that finding a way to block this treatment response in the tumor microenvironment may improve the effectiveness of therapy.

"Cancer therapies are increasingly evolving to be very specific, targeting key molecular engines that drive the cancer rather than more generic vulnerabilities, such as damaging DNA. Our findings indicate that the tumor microenvironment also can influence the success or failure of these more precise therapies." In other words, the same cancer cell, when exposed to different "neighborhoods," may have very different responses to treatment.

The major clinical reason that chemotherapy ultimately fails in the face of advanced cancer, Nelson said, is because the doses necessary to thoroughly wipe out the cancer would also be lethal to the patient. "In the laboratory we can 'cure' most any cancer simply by giving very high doses of toxic therapies to cancer cells in a petri dish. However, in people, these high doses would not only kill the cancer cells but also normal cells and the host." Therefore, treatments for common solid tumors are given in smaller doses and in cycles, or intervals, to allow the normal cells to recover. This approach may not eradicate all of the tumor cells, and those that survive can evolve to become resistant to subsequent rounds of anti-cancer therapy.

For the study the team of researchers – which also involved investigators at the University of Washington, Oregon Health and Science University, the Buck Institute for Research on Aging, the Lawrence Berkeley National Laboratory – examined cancer cells from prostate, breast and ovarian cancer patients who had been treated with chemotherapy.

"This study is an example of collaborative, translational research that capitalizes on years of federally funded investments into the development of tissue banks and clinical trials in which we were able to track long-term patient outcomes. Investing in this type of infrastructure is critical but may take many years to see payoff," said Nelson, who serves as principal investigator of the Pacific Northwest Prostate Cancer SPORE, a federally funded, multi-institution research consortium led by the Hutchinson Center.

The National Institutes of Health, the National Cancer Institute, the Department of Defense and the Prostate Cancer Foundation funded the research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>