Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify the "Bin Laden" of Cancer Causing Faulty Proteins

13.05.2002


Researchers in the University of Warwick’s Molecular Medicine Research Centre have found the “Bin Laden” of cancer causing faulty proteins. They have undermined the old complex model of how many cancers start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”



Fighting cancer is similar to the war against terrorism. Current cancer models suggest that a network of several cell mutations is needed to begin a cancer. Both terrorism and current models of cancer have complex origins that make it difficult to find simple causes or easy targets that can be tackled to solve either problem. Treatment of developed cancers also resembles the methods used to deal with established terrorist networks - aggressive therapies to destroy the cancer/terrorism with high risks of damage to healthy tissue/ non combatants.

But new work by Dr. Stella Pelengaris, and Dr Mike Khan at the University of Warwick’s Molecular Medicine Research Centre has undermined the old complex model of how a cancer start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”


c-Myc is a protein which when switched on grows more cells when the body needs them. Sometimes it fails to switch off or switches itself on when it is not wanted. Normally our bodies have a fail safe mechanism which causes cells to commit suicide if c-Myc malfunctions in this way. This switching on of c-Myc and the failure of the cell suicide mechanism are two of the mutations required to start a cancer. However many researchers currently believe that many more mutations are also required if a cancer is to develop, for instance a mutation for developing a new blood supply required to nourish the growing cancer and mutation to allow cancerous cells to escape, travel the body and spread the cancer etc.

The researchers were not convinced by the need for a complex set of mutations and decided see what would happen if they introduced to pancreatic cells just the two mutations that would create the uncontrolled c-Myc. Their experiments showed that they were correct and that within days a cancer was established just by switching on the c-Myc to build more unwanted cells and inhibiting the cells suicide fail safe mechanism.

Dr Pelengaris said "People think cancer is very complicated, that you need half a dozen genetic lesions in order to get invasion. Our research provides a much more optimistic model. We`ve simplified it. We`re saying that cancer isn`t as complicated as people first thought." c-Myc may be one of several "mission-critical targets for effective cancer therapies.”

The researchers find several parallels between uncontrolled c-Myc and Bin Laden. This research makes c-Myc one of the biggest target for those seeking to develop cancer therapies. However, like Bin Laden, it is now a big target but not the only important cause (though elevated c-Myc levels are found in the majority of cancers).

Lastly like Bin Laden it is still best to catch and deal with the problem early before extensive support networks are developed. This research finds that cancer can have simple non complex causes that give us more optimism in developing forms of treatment - but if they are not detected early enough cancers can still develop a complexity that is difficult to defeat.

Peter Dunn | alphagalileo

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>