Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify the "Bin Laden" of Cancer Causing Faulty Proteins

13.05.2002


Researchers in the University of Warwick’s Molecular Medicine Research Centre have found the “Bin Laden” of cancer causing faulty proteins. They have undermined the old complex model of how many cancers start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”



Fighting cancer is similar to the war against terrorism. Current cancer models suggest that a network of several cell mutations is needed to begin a cancer. Both terrorism and current models of cancer have complex origins that make it difficult to find simple causes or easy targets that can be tackled to solve either problem. Treatment of developed cancers also resembles the methods used to deal with established terrorist networks - aggressive therapies to destroy the cancer/terrorism with high risks of damage to healthy tissue/ non combatants.

But new work by Dr. Stella Pelengaris, and Dr Mike Khan at the University of Warwick’s Molecular Medicine Research Centre has undermined the old complex model of how a cancer start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”


c-Myc is a protein which when switched on grows more cells when the body needs them. Sometimes it fails to switch off or switches itself on when it is not wanted. Normally our bodies have a fail safe mechanism which causes cells to commit suicide if c-Myc malfunctions in this way. This switching on of c-Myc and the failure of the cell suicide mechanism are two of the mutations required to start a cancer. However many researchers currently believe that many more mutations are also required if a cancer is to develop, for instance a mutation for developing a new blood supply required to nourish the growing cancer and mutation to allow cancerous cells to escape, travel the body and spread the cancer etc.

The researchers were not convinced by the need for a complex set of mutations and decided see what would happen if they introduced to pancreatic cells just the two mutations that would create the uncontrolled c-Myc. Their experiments showed that they were correct and that within days a cancer was established just by switching on the c-Myc to build more unwanted cells and inhibiting the cells suicide fail safe mechanism.

Dr Pelengaris said "People think cancer is very complicated, that you need half a dozen genetic lesions in order to get invasion. Our research provides a much more optimistic model. We`ve simplified it. We`re saying that cancer isn`t as complicated as people first thought." c-Myc may be one of several "mission-critical targets for effective cancer therapies.”

The researchers find several parallels between uncontrolled c-Myc and Bin Laden. This research makes c-Myc one of the biggest target for those seeking to develop cancer therapies. However, like Bin Laden, it is now a big target but not the only important cause (though elevated c-Myc levels are found in the majority of cancers).

Lastly like Bin Laden it is still best to catch and deal with the problem early before extensive support networks are developed. This research finds that cancer can have simple non complex causes that give us more optimism in developing forms of treatment - but if they are not detected early enough cancers can still develop a complexity that is difficult to defeat.

Peter Dunn | alphagalileo

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>