Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Identify the "Bin Laden" of Cancer Causing Faulty Proteins


Researchers in the University of Warwick’s Molecular Medicine Research Centre have found the “Bin Laden” of cancer causing faulty proteins. They have undermined the old complex model of how many cancers start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”

Fighting cancer is similar to the war against terrorism. Current cancer models suggest that a network of several cell mutations is needed to begin a cancer. Both terrorism and current models of cancer have complex origins that make it difficult to find simple causes or easy targets that can be tackled to solve either problem. Treatment of developed cancers also resembles the methods used to deal with established terrorist networks - aggressive therapies to destroy the cancer/terrorism with high risks of damage to healthy tissue/ non combatants.

But new work by Dr. Stella Pelengaris, and Dr Mike Khan at the University of Warwick’s Molecular Medicine Research Centre has undermined the old complex model of how a cancer start and identified a single protein known as c-Myc as a “mission-critical target for effective cancer therapies.”

c-Myc is a protein which when switched on grows more cells when the body needs them. Sometimes it fails to switch off or switches itself on when it is not wanted. Normally our bodies have a fail safe mechanism which causes cells to commit suicide if c-Myc malfunctions in this way. This switching on of c-Myc and the failure of the cell suicide mechanism are two of the mutations required to start a cancer. However many researchers currently believe that many more mutations are also required if a cancer is to develop, for instance a mutation for developing a new blood supply required to nourish the growing cancer and mutation to allow cancerous cells to escape, travel the body and spread the cancer etc.

The researchers were not convinced by the need for a complex set of mutations and decided see what would happen if they introduced to pancreatic cells just the two mutations that would create the uncontrolled c-Myc. Their experiments showed that they were correct and that within days a cancer was established just by switching on the c-Myc to build more unwanted cells and inhibiting the cells suicide fail safe mechanism.

Dr Pelengaris said "People think cancer is very complicated, that you need half a dozen genetic lesions in order to get invasion. Our research provides a much more optimistic model. We`ve simplified it. We`re saying that cancer isn`t as complicated as people first thought." c-Myc may be one of several "mission-critical targets for effective cancer therapies.”

The researchers find several parallels between uncontrolled c-Myc and Bin Laden. This research makes c-Myc one of the biggest target for those seeking to develop cancer therapies. However, like Bin Laden, it is now a big target but not the only important cause (though elevated c-Myc levels are found in the majority of cancers).

Lastly like Bin Laden it is still best to catch and deal with the problem early before extensive support networks are developed. This research finds that cancer can have simple non complex causes that give us more optimism in developing forms of treatment - but if they are not detected early enough cancers can still develop a complexity that is difficult to defeat.

Peter Dunn | alphagalileo

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>