Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A low-carb diet may stunt prostate tumor growth

A diet low in carbohydrates may help stunt the growth of prostate tumors, according to a new study led by Duke Prostate Center researchers. The study, in mice, suggests that a reduction in insulin production possibly caused by fewer carbohydrates may stall tumor growth.

“This study showed that cutting carbohydrates may slow tumor growth, at least in mice,” said Stephen Freedland, M.D., a urologist at Duke University Medical Center and lead researcher on the study. “If this is ultimately confirmed in human clinical trials, it has huge implications for prostate cancer therapy through something that all of us can control, our diets.”

Freedland conducted most of the research for this study while doing a fellowship in urology at Johns Hopkins’ Brady Urological Institute under the tutelage of William Isaacs, Ph.D., a molecular geneticist there.

The researchers published their results on November 13, 2007 in the online edition of the journal Prostate. The study was funded by the Department of Veterans Affairs, the Department of Surgery and the Division of Urology at Duke University Medical Center, the Prostate Cancer Foundation, and the Department of Defense Prostate Cancer Research Program.

The researchers hypothesized that since serum insulin and a related substance known as insulin-like growth factor (IGF) had been linked with the growth of prostate tumors in earlier research in mice, a reduction in the body’s levels of these substances might slow tumor growth, Freedland said.

The researchers compared tumor growth in 75 mice that were eating either a low-carbohydrate diet, a low-fat but high-carbohydrate diet, or a Western diet, high in fat and carbohydrates.

The mice that ate a low-carbohydrate diet had the longest survival and smallest tumor size, Freedland said.

“Low-fat mice had shorter survival and larger tumors while mice on the Western diet had the worst survival and biggest tumors,” he said. “In addition, though both the low-carb and low-fat mice had lower levels of insulin, only the low-carb mice had lower levels of the form of IGF capable of stimulating tumor growth.”

The low-carbohydrate diet definitely had the most significant effect on tumor growth and survival, he said.

The next step will be to test the findings of this study in humans, and further examine the potential positive effects that a low-carbohydrate diet may have on tumor growth, Freedland said.

“We are planning to start clinical trials sometime next year,” he said. “The results of this study are very promising, but of course much more work needs to be done.”

Lauren Shaftel Williams | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>