Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Twinkle After-Effect" Can Help Retinal Patients Detect Vision Loss Quickly and Cheaply

Scientists at Schepens Eye Research Institute, an affiliate of Harvard Medical School, have discovered a simple and inexpensive way for patients with retinal and other eye disease to keep track of changes in their vision loss.

In a study published in this week’s PLoS ONE (October 24, 2007) they demonstrate that a compelling visual illusion known as the induced twinkle after-effect (TAE) can accurately identify the location and breadth of actual blind spots in people with retinal disease. The twinkle after-effect is a “twinkling” that people can see in a blind spot when they stare at a blank screen after staring at a noisy visual target such as a detuned television screen.

“Our hope is that we can make this simple technique available online or on a DVD,” says Dr. Peter Bex, associate scientist at Schepens Eye Research Institute and the principal investigator of the study. “This will be particularly helpful with patients who have glaucoma, diabetic retinopathy or macular degeneration where early detection of changes in vision can impact the effectiveness of treatments.”

According to Bex, many people fail to seek help when they develop blind spots in their vision, because their brains automatically compensate or “fill in” the missing information in their visual field. Since everyone has a blind spot where the optic nerve meets the retina, this perceptual “fill in” process is useful for normally sighted people, allowing them a complete visual image. “But this innate process can mask the effects of serious disorders such as diabetic retinopathy and glaucoma and keep sufferers from seeking help until the vision loss is very serious or they bump into objects they can no longer see.”

The traditional gold standard method for detecting blind spots (scotomas) is very expensive and time consuming and must be done in an ophthalmologist’s office. The technique known as retinal specific microperimetry is a diagnostic tool that costs nearly 50 thousand dollars and requires specialized training to apply.

In 1992 scientists became aware of what they eventually named the “twinkle after effect.” They discovered that when someone looks at a television screen filled with static noise while covering part of their visual field with a small patch, the formerly patched area is left with a twinkling sensation after the noise is turned off and the person looks at a blank screen. The rest of the visual field does not experience the twinkling effect, which was described by one patient as resembling a moving cumulous cloud. “While this discovery was intriguing, it wasn’t clear how it could be used for patients,” says Bex.

In the past several years, Bex and his team began to understand its potential. “We theorized that if people with blind spots stared at a noisy screen, the blind areas would “twinkle” when the screen was turned off and their eyes focused on a blank screen. These ‘twinkling’ blind spot areas could then easily be mapped,” he says.

To test their theory, Bex and his team asked eight patients with macular degeneration to undergo the retinal specific microperimetry test and his “twinkling after-effect” test. The team provided a blank touch screen--after the noisy screen--so patients could outline the twinkling areas with their finger.

The team found that the results of the two tests matched in 75 percent of cases, and visual defects could be detected in areas that are not accessible to conventional microperimetry, confirming his belief that TAE could be used diagnostically. “This tool cannot replace the more sophisticated technique but we believe it is a powerful, simple tool that patients can use daily in the privacy of their home to detect any changes in their vision,” he says. “If a patient detects a change, his or her physician can then study it more closely and offer therapy.”

While the results of this small study are very encouraging, Bex says the next step is to do a larger clinical study.

Ultimately Bex sees this type of test being free to the public on the Internet or distributed through a public health entity. “We really believe this could have a great impact on the visual health of the community,” says Bex.

Other members of the study team are Michael D. Crossland and Steven C. Dakin of the UCL Institute of Ophthalmology, London, UK.

Schepens Eye Research Institute is an affiliate of Harvard Medical School and the largest independent eye research institute in the world.

Andrew Hyde | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>