Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug combination might offer hope for patients deadly brain tumors

22.10.2007
Brain cancer patients with the poorest prognosis -- those with a type of deadly tumor known as glioblastoma multiforme (GBM) -- may survive longer with a drug that chokes off a tumor’s blood supply.

According to a new study by researchers at Duke’s Preston Robert Tisch Brain Tumor Center, a combination of bevacizumab -- commonly known as Avastin -- and a standard chemotherapy agent, may increase the amount of time GBM patients can survive without tumor growth, and may significantly increase their overall survival.

“For this study, we looked at patients whose tumors had returned after initial treatment, and we found that this drug combination could significantly improve outcomes for these people, who are typically given about three to six months to live,” said James J. Vredenburgh, M.D., a neuro-oncologist at Duke and lead investigator on the study. “These results represent tremendous hope for these patients and their families.”

The researchers published their findings in the October 20, 2007 issue of the Journal of Clinical Oncology and an editorial accompanied the publication. The study was funded by the National Institutes of Health, the Preston Robert Tisch Brain Tumor Research Fund and the Bryan Cless Research Fund.

In this pilot study, researchers administered a combination of bevacizumab and irinotecan, a standard chemotherapeutic agent, to 35 patients whose GBMs had returned. Each patient had already been treated with a standard therapy regimen, possibly including surgery, radiation and chemotherapy.

Almost half saw no tumor progression after six months, and almost 80 percent were still alive six months after diagnosis.

Patients with recurrent GBM who are treated with standard therapies, such as chemotherapy alone, have tumor progression at six months in about 75 percent of cases and fewer than 50 percent are alive after six months.

“Historically, when GBM recurred, there had typically been very little else we could do,” said Vredenburgh. “We had one patient on this trial who had been already been told to get his affairs in order; he started the trial and over a year later he’s still here, so this is very promising.”

Bevacizumab has been heralded as a success in treating several types of cancer, including colorectal and lung cancers. It is one member of a class of drugs called anti-angiogenics, which work by stunting the otherwise rapid growth of blood vessels that feed a tumor’s growth and spread.

“We speculate that bevacizumab and irinotecan each attack a particular characteristic of the tumor independently or they work together, with the bevacizumab suppressing the growth of blood vessels which makes the tumor more susceptible to the chemotherapy,” Vredenburgh said. “Further studies will tease out the exact mechanism of the therapy’s success and we also hope to study the effectiveness of this treatment in patients with newly diagnosed GBM.”

About 8,000 to 10,000 new cases of GBM are diagnosed each year in the United States, and GBMs account for about half of all primary brain tumors, according to Accelerate Brain Cancer Cure, a not-for-profit organization dedicated to hastening the discovery of effective treatments for brain cancer. Less than 30 percent of patients diagnosed with primary GBMs are alive one year after diagnosis, and after 10 years, only 2.3 percent are still alive.

Even when GBMs are effectively treated with surgery or medicines, they return in more than 90 percent of all cases.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>