Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug combination might offer hope for patients deadly brain tumors

22.10.2007
Brain cancer patients with the poorest prognosis -- those with a type of deadly tumor known as glioblastoma multiforme (GBM) -- may survive longer with a drug that chokes off a tumor’s blood supply.

According to a new study by researchers at Duke’s Preston Robert Tisch Brain Tumor Center, a combination of bevacizumab -- commonly known as Avastin -- and a standard chemotherapy agent, may increase the amount of time GBM patients can survive without tumor growth, and may significantly increase their overall survival.

“For this study, we looked at patients whose tumors had returned after initial treatment, and we found that this drug combination could significantly improve outcomes for these people, who are typically given about three to six months to live,” said James J. Vredenburgh, M.D., a neuro-oncologist at Duke and lead investigator on the study. “These results represent tremendous hope for these patients and their families.”

The researchers published their findings in the October 20, 2007 issue of the Journal of Clinical Oncology and an editorial accompanied the publication. The study was funded by the National Institutes of Health, the Preston Robert Tisch Brain Tumor Research Fund and the Bryan Cless Research Fund.

In this pilot study, researchers administered a combination of bevacizumab and irinotecan, a standard chemotherapeutic agent, to 35 patients whose GBMs had returned. Each patient had already been treated with a standard therapy regimen, possibly including surgery, radiation and chemotherapy.

Almost half saw no tumor progression after six months, and almost 80 percent were still alive six months after diagnosis.

Patients with recurrent GBM who are treated with standard therapies, such as chemotherapy alone, have tumor progression at six months in about 75 percent of cases and fewer than 50 percent are alive after six months.

“Historically, when GBM recurred, there had typically been very little else we could do,” said Vredenburgh. “We had one patient on this trial who had been already been told to get his affairs in order; he started the trial and over a year later he’s still here, so this is very promising.”

Bevacizumab has been heralded as a success in treating several types of cancer, including colorectal and lung cancers. It is one member of a class of drugs called anti-angiogenics, which work by stunting the otherwise rapid growth of blood vessels that feed a tumor’s growth and spread.

“We speculate that bevacizumab and irinotecan each attack a particular characteristic of the tumor independently or they work together, with the bevacizumab suppressing the growth of blood vessels which makes the tumor more susceptible to the chemotherapy,” Vredenburgh said. “Further studies will tease out the exact mechanism of the therapy’s success and we also hope to study the effectiveness of this treatment in patients with newly diagnosed GBM.”

About 8,000 to 10,000 new cases of GBM are diagnosed each year in the United States, and GBMs account for about half of all primary brain tumors, according to Accelerate Brain Cancer Cure, a not-for-profit organization dedicated to hastening the discovery of effective treatments for brain cancer. Less than 30 percent of patients diagnosed with primary GBMs are alive one year after diagnosis, and after 10 years, only 2.3 percent are still alive.

Even when GBMs are effectively treated with surgery or medicines, they return in more than 90 percent of all cases.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>