Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New active compound identified in treatment of malaria

15.10.2007
Malaria is caused by Plasmodium parasites and it is the female Anopheles mosquito that acts as a vector for these malarial parasites in to the human body.

Each year, 200 to 400 million people are infected in the underdeveloped and developing regions of the planet, causing the death of between 2 to 3 million of their inhabitans, most of which are children below 5 years of age. Several therapeutic agents that efficiently fight the disease already exist, but nevertheless; there is still a need to develop new antimalarial drugs to increase the therapeutic arsenal against the disease and to help prevent the different strains of already resistant Plasmodium parasites from acquiring further resistance to antimalarial drugs.

The Universidad Autónoma de Barcelona and the Universidad Complutense de Madrid have patented a new active compound for the treatment of malaria.

The researchers have also identified the gene where this compound inhibits the growth of the parasite, since it has a crucial role in its cycle inside the erythrocytes. The new compound is a non digestive protease inhibitor that does not allow the growth or development of the Plasmodium parasite inside the erythrocytes. This active compound, even considering its peptide origin, is expected to improve the activity and bioavailability of the drugs.

The identification of specific targets essential for the development of the parasite is an effective tool to facilitate the development of new drugs that cure infections by parasites resistant to current antimalarial drugs. The target identified, is a single gene with a very specific role for the parasite, and that is conserved and shared among all the species of plasmodium, which potentially implies a low probability for acquiring resistance. Also, the human host has several homologous genes to this target gene, but with different properties to the parasitic one, which is the possible reason for nearly non existent toxic effects of the new active compound in the mice used to test the drug, lending an additional advantage to this patented compound.

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>