Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Holy Grail' of hearing: True identity of pivotal hearing structure is revealed

07.09.2007
Our ability to hear is made possible by way of a Rube Goldberg-style process in which sound vibrations entering the ear shake and jostle a successive chain of structures until, lo and behold, they are converted into electrical signals that can be interpreted by the brain. Exactly how the electrical signal is generated has been the subject of ongoing research interest.

In a study published in the September 6 issue of the journal Nature, researchers have shed new light on the hearing process by identifying two key proteins that join together at the precise location where energy of motion is turned into electrical impulses. The discovery, described by some scientists as one of the holy grails of the field, was made by researchers at the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health (NIH), and the Scripps Research Institute in La Jolla, CA.

“This team has helped solve one of the lingering mysteries of the field,” says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. “The better we understand the pivotal point at which a person is able to discern sound, the closer we are to developing more precise therapies for treating people with hearing loss, a condition that affects roughly 32.5 million people in the United States alone.”

When a noise occurs, such as a car honking or a person laughing, sound vibrations entering the ear first bounce against the eardrum, causing it to vibrate. This, in turn, causes three bones in the middle ear to vibrate, amplifying the sound. Vibrations from the middle ear set fluid in the inner ear, or cochlea, into motion and a traveling wave to form along a membrane running down its length. Sensory cells (called hair cells) sitting atop the membrane “ride the wave” and in doing so, bump up against an overlying membrane. When this happens, bristly structures protruding from their tops (called stereocilia) deflect, or tilt to one side. The tilting of the stereocilia cause pore-sized channels to open up, ions to rush in, and an electrical signal to be generated that travels to the brain, a process called mechanoelectrical transduction.

Most scientists believe that the channel gates are opened and closed by microscopic bridges—called “tip links”—that connect shorter stereocilia to taller ones positioned behind them. If scientists could determine what the tip links are made of, they’d be one step closer to understanding what causes the channel gates to open. This is no easy feat, however, because stereocilia are extremely small, scarce, and difficult to handle. Several proteins had been reported to occur at the tip link in earlier studies, but results have been conflicting to this point.

Cadherin 23 and Protocadherin 15 Unite to Form Tip Link

Using three lines of evidence, NIDCD scientists Hirofumi Sakaguchi, M.D., Ph.D., Joshua Tokita, and Bechara Kachar, M.D., together with Piotr Kazmierczak and Ulrich Müller, Ph.D., of Scripps Research Institute, and other collaborators have demonstrated that two proteins associated with hearing loss—cadherin 23 (CDH23) and protocadherin 15 (PCDH15)—unite and adhere to one another to form the tip link. Mutations in CDH23 are known to cause one form of Usher syndrome as well as a nonsyndromic recessive form of deafness, and mutations in PCDH15 are responsible for another form of Usher syndrome. (A syndrome is a disease or disorder that has more than one feature or symptom, while the term “nonsyndromic” refers to a disease or disorder that is not associated with other inherited characteristics.) Usher syndrome is the most common cause of deaf-blindness in humans.

“Cadherin 23 and protocadherin 15 have been implicated in a variety of forms of late- and early-onset deafness, and a whole range of mutations can produce different outcomes,” says NIDCD’s Kachar, a co-senior investigator on the study. “Now that we know how these two proteins interact at the tip link, we can perhaps predict how different types of hearing loss can take place depending on where a mutation is located.”

Three Lines of Evidence

The researchers first created antibodies that would bind to and label short segments on the CDH23 and PCDH15 proteins in the inner ears of rats and guinea pigs. (Both proteins were identified at the tip link, respectively, in earlier studies.) Using green fluorescence and electron microscopy studies, they showed that CDH23 was located on the side of the taller stereocilium and PCDH15 was present on the tip of the shorter one, with their loose ends overlapping in between. The researchers were able to identify both proteins, while earlier studies had not, because they removed an obstacle to the antibody-binding process: calcium. Under normal conditions, CDH23 and PCDH15 are studded with calcium ions, which prevent antibodies from binding to the targeted sites. When calcium was removed through the addition of a chemical known as BAPTA, both labels became visible.

Next, the researchers built a structure resembling a tip link by expressing the CDH23 and PCDH15 proteins in the laboratory and watching how they interacted. When conditions were right, the two proteins wound themselves tightly together from one end to the other in a configuration that mirrored a naturally occurring tip link. The results were surprising, since the scientific consensus had been that these proteins would not interact at all. As with normal tip links, the structure thrived in calcium concentrations that paralleled those found in fluid of the inner ear, while a drastic reduction in calcium disrupted the structure.

Lastly, the scientists found that one mutation of PCDH15 that causes one form of deafness inhibited the interaction of the two proteins, leading them to conclude that the mutation reduces the adhesive properties of the two proteins and prevents the formation of the tip link. In a second mutation of PCDH15, the tip link was not destroyed; the scientists suggested that the deafness is not likely caused by the breakup of the tip link but by interference with its mechanical properties.

Knowing precisely the composition and configuration of the tip link, scientists can now explore how these proteins interact with other components to form the rest of the transduction machinery. In addition, scientists can study how new treatments might be developed to address the breaking up of tip links through environmental factors, such as loud noise.

“Now that we understand what the tip link is made of and what conditions are required to assemble it,” says Kachar, “we can study what it might take to rejoin tip links as a possible method for restoring hearing in people with some forms of hearing loss that may have resulted from disruption of the tip link.”

Jennifer Wenger | EurekAlert!
Further information:
http://www.nih.gov
http://www.nidcd.nih.gov

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>