Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain how insulin secreting cells maintain their glucose sensitivity

06.09.2007
Scientists at the leading Swedish medical university Karolinska Institutet have now disclosed the mystery how the insulin-secreting cells maintain an appropriate number of ATP sensing ion channel proteins on their surface.

This mechanism, which is described in the latest number of Cell Metabolism, explains how the human body can keep the blood glucose concentration within the normal range and thereby avoid the development of diabetes.

Blood sugar absorbed from food has to timely enter muscles as energy supply as well as the liver and fat tissue for energy storage. Otherwise, diabetes occurs. Such glucose transport is precisely controlled by insulin, the body’s only hormone capable of lowering blood sugar. This hormone is released from insulin-secreting cells in the pancreas.

The ion channel proteins that are regulated by ATP and that transport potassium ions (KATP channels) are situated on the surface of the insulin-secreting cells to sense blood sugar and control sugar-stimulated insulin secretion. However, it has been a long-standing mystery how the insulin-secreting cells keep an appropriate number of KATP channels on their surface. Scientists at the the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, have now disclosed a new traffic route whereby sugar promotes the insulin secretion controller KATP channel to march to its post.

Dogmatically, only two routes were believed to operate in insulin-secreting cells to deliver the macromolecules newly manufactured or modified inside cells to the cell surface where they

release or reside to function. One is referred to as a regulated insulin secretory pathway. The other is termed a constitutive pathway to renew cell surface lipids and proteins including KATP channels.

“We have now found that the newly manufactured KATP channels in insulin-secreting cells reside in a non-insulin-containing structure, which contains the regulated secretory granule marker chromogranin,” says Per-Olof Berggren. “Such a structure moves to the cell surface subsequent to elevation of sugar concentration in a Ca2+- and protein kinase A-dependent fashion.”

According to Professor Berggren the discovery is very important. This entirely new traffic route endows insulin-secreting cells with an efficient way to maintain an appropriate number of KATP channels on their surface and thereby being able to adequately keep the blood glucose concentration within the normal range thus avoiding the development of diabetes.

Katarina Sternudd | alfa
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>