Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule blocks gene, sheds light on liver cancer

03.08.2007
New research shows how a particular small molecule blocks the activity of a cancer-suppressing gene, allowing liver-cancer cells to grow and spread.

This molecule is a microRNA, a recently discovered class of tiny molecules used by cells to help control the kinds and amounts of proteins they make. More than 250 different microRNAs have been discovered, and several have been linked to cancer.

These findings show exactly how one specific microRNA, called miR-21, helps cancer develop.

This molecule occurs at unusually high levels in many kinds of cancer cells. The study looked at a gene called PTEN (pronounced P-TEN), which normally protects cells from becoming cancerous. Researchers know that the abnormal silencing of this tumor-suppressor gene contributes to the development of liver cancer and other malignancies.

The findings help explain how liver cancer develops and may identify new drug targets for treating the disease. This particular microRNA might also provide a marker to help determine a patient's prognosis.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, is published in the August issue of the journal Gastroenterology.

“Our findings essentially describe a new mechanism used by cells to regulate PTEN,” says principal investigator Tushar Patel, professor of internal medicine, director of hepatology and a liver-cancer specialist at Ohio State University Medical Center.

They show that high levels of miR-21 block the PTEN gene, he explained. This, in turn, activates chemical pathways that enable cancer cells to proliferate, migrate and invade other tissues, all of which are features of tumor formation.

Patel and his collaborators began the study by measuring the relative levels of 197 microRNAs in normal liver cells and in liver cancer cells from human tumors and in four liver cancer cell lines.

Levels of miR-21 were up to nine times greater in liver-tumor tissue compared with normal liver tissue, twice that of the next highest microRNA.

Earlier research led by Patel had shown that miR-21 probably targeted PTEN, and this study confirmed that.

Furthermore, the researchers showed that adding high levels of miR-21 to normal liver cells caused PTEN levels to drop. They also traced the chemical pathways that increased the cells' abilities to proliferate, migrate and invade other tissues.

“Our findings indicate that miR-21 plays a fundamental role in tumor-cell behavior and cancer development,” Patel says, “and this may also be relevant to other tumors in which miR-21 is overexpressed. If this work is reproduced in investigations of other cancers, it could be a big step forward,” he says.

Funding from the National Cancer Institute, the National Institute of Diabetes and Digestive and Kidney Diseases and the Scott and White Hospital Foundation supported this research.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>