Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule blocks gene, sheds light on liver cancer

03.08.2007
New research shows how a particular small molecule blocks the activity of a cancer-suppressing gene, allowing liver-cancer cells to grow and spread.

This molecule is a microRNA, a recently discovered class of tiny molecules used by cells to help control the kinds and amounts of proteins they make. More than 250 different microRNAs have been discovered, and several have been linked to cancer.

These findings show exactly how one specific microRNA, called miR-21, helps cancer develop.

This molecule occurs at unusually high levels in many kinds of cancer cells. The study looked at a gene called PTEN (pronounced P-TEN), which normally protects cells from becoming cancerous. Researchers know that the abnormal silencing of this tumor-suppressor gene contributes to the development of liver cancer and other malignancies.

The findings help explain how liver cancer develops and may identify new drug targets for treating the disease. This particular microRNA might also provide a marker to help determine a patient's prognosis.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, is published in the August issue of the journal Gastroenterology.

“Our findings essentially describe a new mechanism used by cells to regulate PTEN,” says principal investigator Tushar Patel, professor of internal medicine, director of hepatology and a liver-cancer specialist at Ohio State University Medical Center.

They show that high levels of miR-21 block the PTEN gene, he explained. This, in turn, activates chemical pathways that enable cancer cells to proliferate, migrate and invade other tissues, all of which are features of tumor formation.

Patel and his collaborators began the study by measuring the relative levels of 197 microRNAs in normal liver cells and in liver cancer cells from human tumors and in four liver cancer cell lines.

Levels of miR-21 were up to nine times greater in liver-tumor tissue compared with normal liver tissue, twice that of the next highest microRNA.

Earlier research led by Patel had shown that miR-21 probably targeted PTEN, and this study confirmed that.

Furthermore, the researchers showed that adding high levels of miR-21 to normal liver cells caused PTEN levels to drop. They also traced the chemical pathways that increased the cells' abilities to proliferate, migrate and invade other tissues.

“Our findings indicate that miR-21 plays a fundamental role in tumor-cell behavior and cancer development,” Patel says, “and this may also be relevant to other tumors in which miR-21 is overexpressed. If this work is reproduced in investigations of other cancers, it could be a big step forward,” he says.

Funding from the National Cancer Institute, the National Institute of Diabetes and Digestive and Kidney Diseases and the Scott and White Hospital Foundation supported this research.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>