Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule blocks gene, sheds light on liver cancer

03.08.2007
New research shows how a particular small molecule blocks the activity of a cancer-suppressing gene, allowing liver-cancer cells to grow and spread.

This molecule is a microRNA, a recently discovered class of tiny molecules used by cells to help control the kinds and amounts of proteins they make. More than 250 different microRNAs have been discovered, and several have been linked to cancer.

These findings show exactly how one specific microRNA, called miR-21, helps cancer develop.

This molecule occurs at unusually high levels in many kinds of cancer cells. The study looked at a gene called PTEN (pronounced P-TEN), which normally protects cells from becoming cancerous. Researchers know that the abnormal silencing of this tumor-suppressor gene contributes to the development of liver cancer and other malignancies.

The findings help explain how liver cancer develops and may identify new drug targets for treating the disease. This particular microRNA might also provide a marker to help determine a patient's prognosis.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, is published in the August issue of the journal Gastroenterology.

“Our findings essentially describe a new mechanism used by cells to regulate PTEN,” says principal investigator Tushar Patel, professor of internal medicine, director of hepatology and a liver-cancer specialist at Ohio State University Medical Center.

They show that high levels of miR-21 block the PTEN gene, he explained. This, in turn, activates chemical pathways that enable cancer cells to proliferate, migrate and invade other tissues, all of which are features of tumor formation.

Patel and his collaborators began the study by measuring the relative levels of 197 microRNAs in normal liver cells and in liver cancer cells from human tumors and in four liver cancer cell lines.

Levels of miR-21 were up to nine times greater in liver-tumor tissue compared with normal liver tissue, twice that of the next highest microRNA.

Earlier research led by Patel had shown that miR-21 probably targeted PTEN, and this study confirmed that.

Furthermore, the researchers showed that adding high levels of miR-21 to normal liver cells caused PTEN levels to drop. They also traced the chemical pathways that increased the cells' abilities to proliferate, migrate and invade other tissues.

“Our findings indicate that miR-21 plays a fundamental role in tumor-cell behavior and cancer development,” Patel says, “and this may also be relevant to other tumors in which miR-21 is overexpressed. If this work is reproduced in investigations of other cancers, it could be a big step forward,” he says.

Funding from the National Cancer Institute, the National Institute of Diabetes and Digestive and Kidney Diseases and the Scott and White Hospital Foundation supported this research.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>