Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colon cancer a disease of hormone deficiency

02.08.2007
Researchers at the Kimmel Cancer Center at Jefferson in Philadelphia have found new evidence suggesting that colon cancer is actually a disease of missing hormones that could potentially be treated by hormone replacement therapy.

Reporting August 1, 2007 in the journal Gastroenterology, clinical pharmacologist Scott Waldman, M.D., Ph.D., professor and chair of pharmacology and experimental therapeutics at Jefferson Medical College of Thomas Jefferson University, and his co-workers showed that GCC – guanylyl cyclase C, a protein receptor on the surface of intestinal epithelial cells for two hormones, guanylin and uroguanylin, can suppress tumor formation. These hormones regulate the growth of intestinal epithelial cells.

But early in colon cancer development, these growth-controlling hormones are “lost” and not expressed, disrupting GCC’s activity, and, Dr. Waldman believes, contributing to tumor formation. Using two separate mouse models that mimic the development of colon cancer in people, his team showed that GCC signaling blocks such tumors from forming.

According to Dr. Waldman, the group found that GCC stops tumors from forming through two different mechanisms. In one case, it controls cell growth, while in the other, it maintains “regulation of genomic integrity.”

In one mouse cancer model, the animals carried mutations in the APC gene, which causes colon polyps that frequently lead to colon cancer. Mice in the other cancer-development model were exposed to a commonly used experimental cancer-causing agent, azoxymethane. “We modeled both ways that humans develop colon cancer, and studied the effects of a lack of GCC on the incidence of colon cancer development,” he explains.

“We found that in animals that have APC mutations, tumors developed in the colon and small intestine, which is expected,” Dr. Waldman says. “A lack of GCC resulted in both larger tumors and a greater number of tumors in the large intestine.” In the carcinogen model, the absence of GCC caused an increase in both tumor number and size also.

The findings indicate that the mechanism of the increase in tumor development through loss of GCC expression was a combination, in both models, of a loss of genomic integrity and an increase in cell growth. “When you eliminate GCC from cells, they develop a level of genomic instability, where they start accumulating more mutations and lose pieces of genetic material,” he explains.

“Putting those pieces together – exposure to carcinogen or spontaneous mutations in APC – which happens to almost every colorectal cancer patient, and the loss of GCC signaling brought on by a loss of the two hormones in one of the earliest events that occurs in tumor development in the intestine,” he notes, “and it’s a recipe for colon cancer.”

The finding “converts colon cancer from a genetic disease, which is the way we’ve all thought about it, to a disease of hormone insufficiency,” Dr. Waldman says. “It’s a completely different way of thinking about the disease.

“Not only does this give a new paradigm in how we think about the disease, but it gives us a new paradigm for treating the disease – that is, by hormone replacement therapy.

Essentially, this takes the genetic disease and converts it to an endocrine disease, with a hormone solution.” The researchers would like to extend these studies to show that by treating patients with hormone replacement therapy, intestinal cancer formation can either be prevented or treated.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>