Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colon cancer a disease of hormone deficiency

02.08.2007
Researchers at the Kimmel Cancer Center at Jefferson in Philadelphia have found new evidence suggesting that colon cancer is actually a disease of missing hormones that could potentially be treated by hormone replacement therapy.

Reporting August 1, 2007 in the journal Gastroenterology, clinical pharmacologist Scott Waldman, M.D., Ph.D., professor and chair of pharmacology and experimental therapeutics at Jefferson Medical College of Thomas Jefferson University, and his co-workers showed that GCC – guanylyl cyclase C, a protein receptor on the surface of intestinal epithelial cells for two hormones, guanylin and uroguanylin, can suppress tumor formation. These hormones regulate the growth of intestinal epithelial cells.

But early in colon cancer development, these growth-controlling hormones are “lost” and not expressed, disrupting GCC’s activity, and, Dr. Waldman believes, contributing to tumor formation. Using two separate mouse models that mimic the development of colon cancer in people, his team showed that GCC signaling blocks such tumors from forming.

According to Dr. Waldman, the group found that GCC stops tumors from forming through two different mechanisms. In one case, it controls cell growth, while in the other, it maintains “regulation of genomic integrity.”

In one mouse cancer model, the animals carried mutations in the APC gene, which causes colon polyps that frequently lead to colon cancer. Mice in the other cancer-development model were exposed to a commonly used experimental cancer-causing agent, azoxymethane. “We modeled both ways that humans develop colon cancer, and studied the effects of a lack of GCC on the incidence of colon cancer development,” he explains.

“We found that in animals that have APC mutations, tumors developed in the colon and small intestine, which is expected,” Dr. Waldman says. “A lack of GCC resulted in both larger tumors and a greater number of tumors in the large intestine.” In the carcinogen model, the absence of GCC caused an increase in both tumor number and size also.

The findings indicate that the mechanism of the increase in tumor development through loss of GCC expression was a combination, in both models, of a loss of genomic integrity and an increase in cell growth. “When you eliminate GCC from cells, they develop a level of genomic instability, where they start accumulating more mutations and lose pieces of genetic material,” he explains.

“Putting those pieces together – exposure to carcinogen or spontaneous mutations in APC – which happens to almost every colorectal cancer patient, and the loss of GCC signaling brought on by a loss of the two hormones in one of the earliest events that occurs in tumor development in the intestine,” he notes, “and it’s a recipe for colon cancer.”

The finding “converts colon cancer from a genetic disease, which is the way we’ve all thought about it, to a disease of hormone insufficiency,” Dr. Waldman says. “It’s a completely different way of thinking about the disease.

“Not only does this give a new paradigm in how we think about the disease, but it gives us a new paradigm for treating the disease – that is, by hormone replacement therapy.

Essentially, this takes the genetic disease and converts it to an endocrine disease, with a hormone solution.” The researchers would like to extend these studies to show that by treating patients with hormone replacement therapy, intestinal cancer formation can either be prevented or treated.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>