Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The original human (‘Old Stone Age’) diet is good for people with diabetes

27.06.2007
Foods of the kind that were consumed during human evolution may be the best choice to control diabetes type 2. A study from Lund University, Sweden, found markedly improved capacity to handle carbohydrate after eating such foods for three months.

During 2.5 million years of human evolution, before the advent of agriculture, our ancestors were consuming fruit, vegetables, nuts, lean meat and fish. In contrast, cereals, dairy products, refined fat and sugar, which now provide most of the calories for modern humans, have been staple foods for a relatively short time.

Staffan Lindeberg at the Department of Medicine, Lund University, has been studying health effects of the original human diet for many years. In earlier studies his research team have noted a remarkable absence of cardiovascular disease and diabetes among the traditional population of Kitava, Trobriand Islands, Papua New Guinea, where modern agrarian-based food is unavailable.

In a clinical study in Sweden, the research group has now compared 14 patients who were advised to consume an ‘ancient’ (Paleolithic, ‘Old stone Age’) diet for three months with 15 patients who were recommended to follow a Mediterranean-like prudent diet with whole-grain cereals, low-fat dairy products, fruit, vegetables and refined fats generally considered healthy.

All patients had increased blood sugar after carbohydrate intake (glucose intolerance), and most of them had overt diabetes type 2. In addition, all had been diagnosed with coronary heart disease. Patients in the Paleolithic group were recommended to eat lean meat, fish, fruit, vegetables, root vegetables and nuts, and to avoid grains, dairy foods and salt.

The main result was that the blood sugar rise in response to carbohydrate intake was markedly lower after 12 weeks in the Paleolithic group (–26%), while it barely changed in the Mediterranean group (–7%). At the end of the study, all patients in the Paleolithic group had normal blood glucose.

The improved glucose tolerance in the Paleolithic group was unrelated to changes in weight or waist circumference, although waist decreased slightly more in that group. Hence, the research group concludes that something more than caloric intake and weight loss was responsible for the improved handling of dietary carbohydrate. The main difference between the groups was a much lower intake of grains and dairy products and a higher fruit intake in the Paleolithic group. Substances in grains and dairy products have been shown to interfere with the metabolism of carbohydrates and fat in various studies.

–If you want to prevent or treat diabetes type 2, it may be more efficient to avoid some of our modern foods than to count calories or carbohydrate, says Staffan Lindeberg.

This is the first controlled study of a Paleolithic diet in humans.

Anna Johansson | alfa
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>