Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists set their sights on cure for AMD

06.06.2007
A groundbreaking surgical therapy capable of stabilising and restoring vision in the vast majority of patients who currently suffer blindness through Age-Related Macular Degeneration (AMD) is to be taken to clinical trial by scientists and clinicians at the UCL Institute of Ophthalmology, Moorfields Eye Hospital and the University of Sheffield. The therapy, using cells derived from human embryonic stem cells to replace the faulty retinal cells that cause AMD, will be developed by the London Project to Cure AMD, a collaborative project launched today bringing together some of the leading specialists in the field.

Around 25 per cent of over-60s in the UK have some degree of visual loss due to AMD, and some 14 million people in Europe currently suffer blindness through the condition, caused by defects in the retinal support cells. There is currently no treatment that prevents the treatment of dry AMD. There has been some success in controlling new blood vessel formation in wet AMD, but these approaches are only suitable for certain patients and are often only temporary.

Thanks to a £4 million donation from a US private donor, the London Project will now be able to assemble the necessary spectrum of scientists and clinicians, led by the UCL Institute of Ophthalmology, to accelerate the technique’s move from laboratory to clinic. The Project is open access and will be made completely available to scientists, clinicians and all those with an interest worldwide.

AMD is associated with defects of the retinal support cells – the retinal pigment epithelial cells (RPE). The rods and cones (the photoreceptors) in the retina, which are the light sensitive cells, depend for their survival on the normal functioning of these cells, and so failure of these cells leads to progressive loss of vision. In addition, the disease often provokes a scarring process at the back of the eye leading to the formation of new blood vessels within the retina which subsequently leak fluid resulting in exudative or so called “wet” AMD.

The London Project’s approach will involve production of a cell replacement therapy from human embryonic stem cells, which are effective in replacing dysfunctional RPE and photoreceptors found in AMD, leading to a surgical therapy capable of stabilising and restoring vision in the vast majority of patients. Surgical procedures already developed and trialled in a number of patients using the patients’ own cells have illustrated that a cell replacement therapy can work.

Professor Pete Coffey, UCL Institute of Ophthalmology and director on the London Project, said: “The London Project aims to deliver treatment for a disease which has no alternative therapy. Using stem cells – which are far more adaptable – can only improve success of what has already been achieved and in addition establish this as a global therapy. This is achievable as a result of bringing together a number of groups who previously were trying to solve the same problem in isolation. The Project aims to engage scientists, clinicians and the public to ensure success through actively attracting and promoting the inclusion of other laboratories, hospitals and institutions by an open access policy and by informing the public of progress.”

Dr Lyndon Da Cruz, lead clinician and consultant ophthalmic surgeon, Moorfields Eye Hospital, said: “The Project is important as it develops a cellular based therapy for a currently untreatable condition. The beauty of this Project is that there are three specialist groups working in parallel; a team in Sheffield, the UCL Institute of Ophthalmology and Moorfields Eye Hospital. Working in conjunction, they will be respectively safety testing the cells in Sheffield, confirming that the cells are RPE cells and preparing them in a form for transplant at the Institute of Ophthalmology, and developing the strategies for the surgery and patient selection based on studies on transplanting autologous RPE (i.e. cells from the patients' own eyes) at Moorfields.

“By driving these in parallel it is felt that the development time will be significantly reduced. Given that AMD could affect up to one third of the population by 2070, and that the bulk of these will have dry AMD, the potential to create a treatment strategy for this condition is critical and may have a major impact on vision loss in the community.”

Professor Ed Byrne, Dean of the UCL Faculty of Biomedical Sciences, said: “The launch of The London Project to Cure AMD reinforces UCL’s position at the forefront of stem cell research in the UK and beyond. We hope that like-minded individuals and organisations will continue to donate funds to world-class research projects such as this, which have the capability of developing life-changing treatments for diseases such as AMD.”

Professor Alistair Fielder, Senior Medical Adviser of Fight for Sight, the leading eye research charity, said: "We are excited about the work of Professor Pete Coffey and his team regarding developments in the treatment of AMD. The London Project represents a real chance to tackle this untreatable condition and bring hope to many. It is marvellous to think that clinical trials could start within five years."

Tom Bremridge, Chief Executive of The Macular Disease Society, said: “This development is exciting and encouraging for current and future generations of AMD patients. While treatments for ‘wet AMD’ are advancing rapidly, sadly patients with ‘dry AMD’ have had no prospect of any viable therapy. Our thanks and congratulations to the instigators of the London Project to Cure AMD.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>