Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists set their sights on cure for AMD

06.06.2007
A groundbreaking surgical therapy capable of stabilising and restoring vision in the vast majority of patients who currently suffer blindness through Age-Related Macular Degeneration (AMD) is to be taken to clinical trial by scientists and clinicians at the UCL Institute of Ophthalmology, Moorfields Eye Hospital and the University of Sheffield. The therapy, using cells derived from human embryonic stem cells to replace the faulty retinal cells that cause AMD, will be developed by the London Project to Cure AMD, a collaborative project launched today bringing together some of the leading specialists in the field.

Around 25 per cent of over-60s in the UK have some degree of visual loss due to AMD, and some 14 million people in Europe currently suffer blindness through the condition, caused by defects in the retinal support cells. There is currently no treatment that prevents the treatment of dry AMD. There has been some success in controlling new blood vessel formation in wet AMD, but these approaches are only suitable for certain patients and are often only temporary.

Thanks to a £4 million donation from a US private donor, the London Project will now be able to assemble the necessary spectrum of scientists and clinicians, led by the UCL Institute of Ophthalmology, to accelerate the technique’s move from laboratory to clinic. The Project is open access and will be made completely available to scientists, clinicians and all those with an interest worldwide.

AMD is associated with defects of the retinal support cells – the retinal pigment epithelial cells (RPE). The rods and cones (the photoreceptors) in the retina, which are the light sensitive cells, depend for their survival on the normal functioning of these cells, and so failure of these cells leads to progressive loss of vision. In addition, the disease often provokes a scarring process at the back of the eye leading to the formation of new blood vessels within the retina which subsequently leak fluid resulting in exudative or so called “wet” AMD.

The London Project’s approach will involve production of a cell replacement therapy from human embryonic stem cells, which are effective in replacing dysfunctional RPE and photoreceptors found in AMD, leading to a surgical therapy capable of stabilising and restoring vision in the vast majority of patients. Surgical procedures already developed and trialled in a number of patients using the patients’ own cells have illustrated that a cell replacement therapy can work.

Professor Pete Coffey, UCL Institute of Ophthalmology and director on the London Project, said: “The London Project aims to deliver treatment for a disease which has no alternative therapy. Using stem cells – which are far more adaptable – can only improve success of what has already been achieved and in addition establish this as a global therapy. This is achievable as a result of bringing together a number of groups who previously were trying to solve the same problem in isolation. The Project aims to engage scientists, clinicians and the public to ensure success through actively attracting and promoting the inclusion of other laboratories, hospitals and institutions by an open access policy and by informing the public of progress.”

Dr Lyndon Da Cruz, lead clinician and consultant ophthalmic surgeon, Moorfields Eye Hospital, said: “The Project is important as it develops a cellular based therapy for a currently untreatable condition. The beauty of this Project is that there are three specialist groups working in parallel; a team in Sheffield, the UCL Institute of Ophthalmology and Moorfields Eye Hospital. Working in conjunction, they will be respectively safety testing the cells in Sheffield, confirming that the cells are RPE cells and preparing them in a form for transplant at the Institute of Ophthalmology, and developing the strategies for the surgery and patient selection based on studies on transplanting autologous RPE (i.e. cells from the patients' own eyes) at Moorfields.

“By driving these in parallel it is felt that the development time will be significantly reduced. Given that AMD could affect up to one third of the population by 2070, and that the bulk of these will have dry AMD, the potential to create a treatment strategy for this condition is critical and may have a major impact on vision loss in the community.”

Professor Ed Byrne, Dean of the UCL Faculty of Biomedical Sciences, said: “The launch of The London Project to Cure AMD reinforces UCL’s position at the forefront of stem cell research in the UK and beyond. We hope that like-minded individuals and organisations will continue to donate funds to world-class research projects such as this, which have the capability of developing life-changing treatments for diseases such as AMD.”

Professor Alistair Fielder, Senior Medical Adviser of Fight for Sight, the leading eye research charity, said: "We are excited about the work of Professor Pete Coffey and his team regarding developments in the treatment of AMD. The London Project represents a real chance to tackle this untreatable condition and bring hope to many. It is marvellous to think that clinical trials could start within five years."

Tom Bremridge, Chief Executive of The Macular Disease Society, said: “This development is exciting and encouraging for current and future generations of AMD patients. While treatments for ‘wet AMD’ are advancing rapidly, sadly patients with ‘dry AMD’ have had no prospect of any viable therapy. Our thanks and congratulations to the instigators of the London Project to Cure AMD.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>