Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arthritis pain processed in brain’s ‘fear zone’, first PET scans reveal

02.04.2007
Researchers at The University of Manchester have discovered that arthritis pain, unlike that induced as part of an experiment, is processed in the parts of the brain concerned with emotions and fear.

A team led by Dr Bhavna Kulkarni has captured the first images of how the brain processes arthritis pain, using positron emission tomography (PET) scanners based at the Christie Hospital.

In a study funded by the Arthritis Research Campaign and published in 'Arthritis and Rheumatism' this week, they compare the brain areas involved in processing arthritic and experimental pain in a group of patients with osteoarthritis.

Dr Kulkarni said: “We knew from our previous neuro-imaging studies that experimentally-induced pain is processed in at least two brain networks, collectively known as the ‘pain matrix.’ The ‘medial pain system’ processes the emotional aspects such as pain’s unpleasantness, while the ‘lateral pain system’ processes the pain’s intensity, location and duration.

“We wanted to see whether the same applied to the clinical pain suffered by people with conditions like arthritis, as no direct comparisons of experimental and clinical pain had been undertaken in the same group of patients.”

Six female and six male patients with osteoarthritis of the knee underwent PET brain-scanning during three different pain states: arthritic knee pain, experimental knee pain (when no arthritic pain was present) and a pain-free state. Each patient also rated their perceived pain intensity and unpleasantness on 0 – 100 rating scales at 10 minute intervals.

“We thought that arthritic and acute experimental pain would be processed within the same areas of the pain matrix,” Dr Kulkarni continued. “But, although both activated both the medial and lateral pain systems, arthritic pain prompted increased activity in the cingulate cortex, thalamus and amygdale within the medial system - the areas concerned with processing fear, emotions and aversive conditioning.

“This suggests that arthritic pain has more emotional salience than experimental pain for these patients, which is consistent with the unpleasantness scores they themselves gave. The increased activity in the areas associated with aversive conditioning, reward and fear, which are less commonly activated during experimental pain, suggests they might be processing fear of further injury and disability associated with the arthritic pain.”

Project supervisor Professor Anthony Jones, whose Human Pain Research Group is based at Salford Royal NHS Foundation Trust, said: “The finding that both experimental and arthritic pain activate the medial and lateral pain systems suggests that there isn’t a unique brain network for processing arthritic pain, and we are therefore justified in using experimental pain to investigate the generalised mechanisms of pain perception. However, it seems that studying experimental pain alone does not provide the complete picture, and that PET scanning patients experiencing different types of clinical pain can reveal subtle changes in brain activity.

“Importantly, the study has demonstrated the importance of the medial pain system during the experience of arthritic pain, suggesting it would be a good target for both new analgesics and non-pharmacological interventions. The body’s own pain-killing chemicals - the endogenous opioid system – could even be a possible candidate for modulation to target pain in the areas we have identified.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>