Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Autoimmunity: Penn Researchers Discover New Molecular Path to Fight Autoimmune Diseases

08.03.2007
Multiple sclerosis, diabetes, and arthritis are among a variety of autoimmune diseases that are aggravated when one type of white blood cell, called the immune regulatory cell, malfunctions.
In humans, one cause of this malfunction is when a mutation in a gene called FOXP3 disables the immune cells’ ability to function. In a new study published online next week in the Proceedings of the National Academy of Sciences, researchers at the University of Pennsylvania School of Medicine have discovered how to modify enzymes that act on the FOXP3 protein, in turn making the regulatory immune cells work better. These findings have important implications for treating autoimmune-related diseases.

“We have uncovered a mechanism by which drugs could be developed to stabilize immune regulatory cells in order to fight autoimmune diseases,” says senior author Mark Greene, MD, PhD, the John Eckman Professor of Pathology and Laboratory Medicine. “There’s been little understanding about how the FOXP3 protein actually works.” First author Bin Li, PhD, a research associate in the Greene lab has been working on elucidating this process since FOXP3’s discovery almost five years ago.

Li discovered that the FOXP3 protein works via a complex set of enzymes. One set of those enzymes are called histone deacetylases, or HDACs. These enzymes are linked to the FOXP3 protein in association with another set of enzymes called histone acetyl transferases that modify the FOXP3 proteins.

Li found that when the histone acetyl transferases are turned on, or when the histone deacetylases are turned off, the immune regulatory cells work better and longer. As a consequence of the action of the acetylating enzyme, the FOXP3 protein functions to turn off pathways that would lead to autoimmune diseases.

“I think this simple approach will revolutionize the treatment of autoimmune diseases in humans because we have a new set of enzymatic drug targets as opposed to the non-specific therapies we now use,” says Greene. Non-specific therapies include the use of steroids and certain chemotherapy-like drugs that act on many cell types and have significant side effects.

“Before this work FOXP3 was thought essential for regulatory T-cell function, but how FOXP3 worked was not known,” says Li. “Our research identifies a critical mechanism. Based on this mechanism, treatments could be developed to modulate this regulatory cell population.”

“In this line of investigation, we have learned how to turn on or off this regulatory immune cell population – which is normally needed to prevent autoimmune diseases – using drugs that are approved for other purposes, but work on these enzymes” notes co-author Sandra Saouaf, PhD, a research associate at Penn.

Li, Greene, Saouaf and Penn colleagues Wayne Hancock and Youhai Chen are now extending this research directly to several mouse models of autoimmune diseases.

Additional co-authors are Arabinda Samanta, Xiaomin Song, Kathryn T. Iacono, Kathryn Bembas, Ran Tao, Samik Basu, and James Riley, all from Penn.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>