Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Autoimmunity: Penn Researchers Discover New Molecular Path to Fight Autoimmune Diseases

08.03.2007
Multiple sclerosis, diabetes, and arthritis are among a variety of autoimmune diseases that are aggravated when one type of white blood cell, called the immune regulatory cell, malfunctions.
In humans, one cause of this malfunction is when a mutation in a gene called FOXP3 disables the immune cells’ ability to function. In a new study published online next week in the Proceedings of the National Academy of Sciences, researchers at the University of Pennsylvania School of Medicine have discovered how to modify enzymes that act on the FOXP3 protein, in turn making the regulatory immune cells work better. These findings have important implications for treating autoimmune-related diseases.

“We have uncovered a mechanism by which drugs could be developed to stabilize immune regulatory cells in order to fight autoimmune diseases,” says senior author Mark Greene, MD, PhD, the John Eckman Professor of Pathology and Laboratory Medicine. “There’s been little understanding about how the FOXP3 protein actually works.” First author Bin Li, PhD, a research associate in the Greene lab has been working on elucidating this process since FOXP3’s discovery almost five years ago.

Li discovered that the FOXP3 protein works via a complex set of enzymes. One set of those enzymes are called histone deacetylases, or HDACs. These enzymes are linked to the FOXP3 protein in association with another set of enzymes called histone acetyl transferases that modify the FOXP3 proteins.

Li found that when the histone acetyl transferases are turned on, or when the histone deacetylases are turned off, the immune regulatory cells work better and longer. As a consequence of the action of the acetylating enzyme, the FOXP3 protein functions to turn off pathways that would lead to autoimmune diseases.

“I think this simple approach will revolutionize the treatment of autoimmune diseases in humans because we have a new set of enzymatic drug targets as opposed to the non-specific therapies we now use,” says Greene. Non-specific therapies include the use of steroids and certain chemotherapy-like drugs that act on many cell types and have significant side effects.

“Before this work FOXP3 was thought essential for regulatory T-cell function, but how FOXP3 worked was not known,” says Li. “Our research identifies a critical mechanism. Based on this mechanism, treatments could be developed to modulate this regulatory cell population.”

“In this line of investigation, we have learned how to turn on or off this regulatory immune cell population – which is normally needed to prevent autoimmune diseases – using drugs that are approved for other purposes, but work on these enzymes” notes co-author Sandra Saouaf, PhD, a research associate at Penn.

Li, Greene, Saouaf and Penn colleagues Wayne Hancock and Youhai Chen are now extending this research directly to several mouse models of autoimmune diseases.

Additional co-authors are Arabinda Samanta, Xiaomin Song, Kathryn T. Iacono, Kathryn Bembas, Ran Tao, Samik Basu, and James Riley, all from Penn.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>