Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive magnetic resonance imaging may help predict who's at risk for a heart attack

29.01.2007
The study suggests that magnetic resonance imaging (MRI)—a highly sensitive technique that provides three-dimensional views of tissue at the molecular level—effectively measured macrophages or white blood cells, in the arterial walls of blood vessels.

These detailed images allowed researchers not only to see macrophage activity, but also to determine whether the activity was unstable and likely to trigger a heart attack or stroke, explains senior study author Zahi A. Fayad, PhD, Director of the Eva and Morris Feld Cardiovascular Imaging Research Laboratory and a Professor of Radiology and Medicine (Cardiology) at The Mount Sinai Medical Center.

Dr. Fayad and his colleagues injected mice with a synthetic material that tracked down and attached itself to macrophages embedded in the arterial walls. Twenty-four hours after injection, MRI tests showed that measuring and assessing macrophages in the arterial walls yielded a 79 percent increase in detection compared with the initial baseline images taken the day before.

"Our study results clearly show that detecting and measuring macrophage levels using MRI could be an effective and non-invasive screening tool for what's becoming one of the leading public health threats worldwide," Dr. Fayad explains. "We have known that macrophages are red flags indicating inflammation in the blood vessels, and mounting evidence has cemented the causal relationship between inflammation and cardiovascular disease. Yet we lacked the technology to measure this inflammation at the molecular level and predict who was at risk. Now, the technology is here, and our findings demonstrate that this new approach in cardiovascular screening not only works, but works very well."

The next step is to test this new approach in larger animals before moving to human clinical trials. Dr. Fayad says it's possible this technique could become part of standard clinical practice in the next few years.

Atherosclerosis is the pathological cause behind cardiovascular, cerebrovascular, and peripheral arterial diseases. It is currently the leading cause of death in industrialized nations, and is estimated that in the next 15 years, cardiovascular diseases alone will be the leading cause of death worldwide.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>