Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patients with amnesia "live in the present"

Scientists at the Wellcome Trust Centre for Neuroimaging, University College London, have shown that people with damage to the hippocampus, the area of the brain that plays a crucial role in learning and memory, not only have trouble remembering the past but also in imagining new and future experiences.

Damage to the hippocampus can be caused by a lack of oxygen to the brain, for example during a cardiac arrest, or various other illnesses such as limbic encephalitis or Alzheimer’s disease.

It has been known for some time that selective damage to the hippocampus can lead to amnesia, with patients unable to recall past events. However, by asking patients to describe imaginary experiences, the research team led by Dr Eleanor Maguire found that the patients' ability to construct fictitious events was also severely impaired. The research is published today in the Proceedings of the National Academy of Sciences.

The researchers asked the patients to imagine and then describe in detail situations in commonplace settings, such as a beach, pub and forest, as well as potentially plausible future events such as a Christmas party or a future meeting with a friend.

"We found that the role played by the hippocampus in processing memory was far broader than merely reliving past experiences," says Dr Maguire, a Wellcome Trust Senior Research Fellow at UCL. "It also seems to support the ability to imagine any kind of experience including possible future events. In that sense, people with damage to the hippocampus are forced to live in the present."

"Furthermore, the patients reported that they were unable to visualise the whole experience in their mind's eye, seeing instead just a collection of separate images," explains Dr Maguire.

Dr Maguire and her colleagues believe that the findings suggest a common mechanism that might underpin both recalling real memories and how we visualise imaginary and future experiences, with the hippocampus providing the spatial context or environmental setting into which the details of our experiences are bound.

Craig Brierley | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>