Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients with amnesia "live in the present"

16.01.2007
Scientists at the Wellcome Trust Centre for Neuroimaging, University College London, have shown that people with damage to the hippocampus, the area of the brain that plays a crucial role in learning and memory, not only have trouble remembering the past but also in imagining new and future experiences.

Damage to the hippocampus can be caused by a lack of oxygen to the brain, for example during a cardiac arrest, or various other illnesses such as limbic encephalitis or Alzheimer’s disease.

It has been known for some time that selective damage to the hippocampus can lead to amnesia, with patients unable to recall past events. However, by asking patients to describe imaginary experiences, the research team led by Dr Eleanor Maguire found that the patients' ability to construct fictitious events was also severely impaired. The research is published today in the Proceedings of the National Academy of Sciences.

The researchers asked the patients to imagine and then describe in detail situations in commonplace settings, such as a beach, pub and forest, as well as potentially plausible future events such as a Christmas party or a future meeting with a friend.

"We found that the role played by the hippocampus in processing memory was far broader than merely reliving past experiences," says Dr Maguire, a Wellcome Trust Senior Research Fellow at UCL. "It also seems to support the ability to imagine any kind of experience including possible future events. In that sense, people with damage to the hippocampus are forced to live in the present."

"Furthermore, the patients reported that they were unable to visualise the whole experience in their mind's eye, seeing instead just a collection of separate images," explains Dr Maguire.

Dr Maguire and her colleagues believe that the findings suggest a common mechanism that might underpin both recalling real memories and how we visualise imaginary and future experiences, with the hippocampus providing the spatial context or environmental setting into which the details of our experiences are bound.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>