Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients with amnesia "live in the present"

16.01.2007
Scientists at the Wellcome Trust Centre for Neuroimaging, University College London, have shown that people with damage to the hippocampus, the area of the brain that plays a crucial role in learning and memory, not only have trouble remembering the past but also in imagining new and future experiences.

Damage to the hippocampus can be caused by a lack of oxygen to the brain, for example during a cardiac arrest, or various other illnesses such as limbic encephalitis or Alzheimer’s disease.

It has been known for some time that selective damage to the hippocampus can lead to amnesia, with patients unable to recall past events. However, by asking patients to describe imaginary experiences, the research team led by Dr Eleanor Maguire found that the patients' ability to construct fictitious events was also severely impaired. The research is published today in the Proceedings of the National Academy of Sciences.

The researchers asked the patients to imagine and then describe in detail situations in commonplace settings, such as a beach, pub and forest, as well as potentially plausible future events such as a Christmas party or a future meeting with a friend.

"We found that the role played by the hippocampus in processing memory was far broader than merely reliving past experiences," says Dr Maguire, a Wellcome Trust Senior Research Fellow at UCL. "It also seems to support the ability to imagine any kind of experience including possible future events. In that sense, people with damage to the hippocampus are forced to live in the present."

"Furthermore, the patients reported that they were unable to visualise the whole experience in their mind's eye, seeing instead just a collection of separate images," explains Dr Maguire.

Dr Maguire and her colleagues believe that the findings suggest a common mechanism that might underpin both recalling real memories and how we visualise imaginary and future experiences, with the hippocampus providing the spatial context or environmental setting into which the details of our experiences are bound.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>