Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underground air might cause DNA damage

15.12.2006
Our everyday environments are full of airborne particles that are harmful to varying degrees when inhaled. Particularly damaging to our cellular DNA are the particles from the underground system in Stockholm, Sweden, according to a new doctoral thesis from Karolinska Institutet.

“Luckily, most of them do not remain in the underground for any length of time,” says scientist Hanna Karlsson. “However, particle levels are often very high. My results show that there is every reason to speed up the work being done to clean the air in the underground.”

Every year, some 5,300 Swedes die premature deaths from inhaling the microscopic particles of coal, asphalt, iron and other materials that pollute the city’s air. These particles, which are the result of incomplete combustion, road surface attrition, etc. could be reduced if the right steps were taken; the problem is that it is not known which particle sources pose the greatest threat to human health.

To build up a picture of which particles are the most harmful, Dr Karlsson has compared how particles from a variety of sources affect cultured lung cells. The results, which are presented in her thesis Particularly harmful particles show that particles from the Stockholm underground are much more damaging to cellular DNA than the other sources tested (e.g. wood smoke and cars).

The airborne particles in the underground system largely comprise iron, and are formed by the abrasion of the train wheels against the rails. The damage is caused when these particles enter the body and form free radicals in the body’s cells. Free radicals are highly reactive molecules that can prove harmful to the cell’s DNA; although such damage can often be repaired by the cell, it can sometime remains untreated, and this increases the risk of cancer.

Another type of particle that stood out in the studies was that caused by the friction between car tyres and the road surface. The report shows that these particles trigger a powerful inflammatory response (i.e. a general defence reaction in the body). Levels of these particles are particularly high in the spring, when road surfaces dry out and cars are still fitted with studded winter tyres.

“It’s a serious problem, as these particles exist in large concentrations in environments that people remain in for long periods,” says Dr Karlsson.

Apart from particles from the underground and the roads, the study also examined those released by the combustion of wood, pellets and diesel. None of the other types of particle tested were totally harmless. Modern wood- and pellet-burning boilers gave off much fewer emissions than old ones, but the particles produced were no less harmful.

Katarina Sternudd | alfa
Further information:
http://diss.kib.ki.se/2006/91-7140-972-6/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>