Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-Off Treatment to Stop Back Pain – Using Patients’ Own Stem Cells

30.11.2006
A University of Manchester researcher has developed a treatment for lower back pain using the patient’s own stem cells, which could replace the use of strong painkillers or surgery that can cause debilitation, neither of which addresses the underlying cause.

Dr Stephen Richardson, of the University’s Division of Regenerative Medicine in the School of Medicine (FMHS), has developed the treatment; and in collaboration with German biotechnology company Arthrokinetics and internationally-renowned spinal surgeons Spinal Foundation are hoping to enter pre-clinical trials next year. It is expected to rapidly yield a marketable product which will revolutionise treatment of long-term low back pain.

As a result Dr Richardson has been named Northwest Young Biotechnologist of the Year (sponsored by Nature) at the North West Development Agency/Bionow awards.

Low back pain (LBP) affects a large proportion of the adult population at some point in their lives and in many of these cases it is persistent, eventually leading to debilitating pain. The majority of the cases of LBP are due to degeneration of the intervertebral disc (IVD), the soft tissue which separates the vertebrae in the spine and protects them from damage; it is the flexibility of this tissue that allows movement of the spine (bending, twisting etc). The IVD is comprised of a central gel-like tissue (nucleus pulposus or NP), surrounded by a fibrous ring of tissue (annulus fibrosus or AF). Over time the NP becomes dry and fibrous and cannot support the weight of the body, which means the disc becomes damaged and painful and this is the source of the LBP in many people.

Currently, treatments address the symptoms – mainly pain – using a combination of painkillers, physiotherapy or surgery, removing tissue to relieve the pain or fusing the vertebrae above and below the painful disc level together to remove the pain, although this also stops movement at that disc level. None of these options is ideal as they only treat the symptoms, not the cause, and are of limited long-term success.

The treatment Dr Richardson is developing uses a cell-based tissue engineering approach to regenerate the IVD at the affected level. This is achieved through the combination of the patients’ own mesenchymal stem cells (MSCs) and a naturally occurring collagen gel that can be implanted through a minimally-invasive surgical technique.

MSCs are a population of progenitor cells found in the bone marrow of adults which can differentiate into many different cell types in the body, including bone, cartilage, fat and muscle cells. Dr Richardson found that for several reasons he could not use cells from the IVD itself and thus spent a number of years developing a method of producing NP cells from MSCs. He, together with colleagues, now has an international patent on this method. It was the development of this method, combined with the establishment of collaborative links with a company to supply the gel and a surgeon to develop the implantation technique, which won Dr Richardson the award.

Dr Richardson explained: “Once we have extracted the bone marrow from the patient and have purified the MSCs, they will be grown in culture and our patented method of differentiation will be applied. They will then be embedded within a gel which can be implanted back into the patient through an arthroscope.

“The gel used, produced by Arthrokinetics, is based on a collagen that is a component of many tissues within the body, a totally natural product that is similar to the gel already used clinically for the treatment of articular cartilage defects. The ability to reimplant this within the body with an arthroscopic procedure – similar to an endoscopy, in which a camera is inserted through a narrow tube into the body – means that there is only a very small scar on the back and the patient could hopefully return home on the same day or the day after the surgery. Once implanted the differentiated MSCs would produce a new NP tissue with the same properties as the original and would both treat the underlying cause of the disease and remove the painful symptoms.”

The treatment has massive implications for the future of LBP treatment – with substantial NHS cost savings as patients could be treated quickly and effectively without any need for extended hospitalisation. In addition, as both the cause and the symptoms are treated, only one treatment should be needed in a lifetime and there would be no need for continuous treatments with painkillers and physiotherapy. The patient would therefore benefit and there are also implications for productivity in the workplace as a large number of work hours are lost every year due to sickness leave for low back pain. In the UK alone the combined figures for lost productivity and health-care costs due to low back pain run in the tens of millions of pounds a year and this will only increase as the population ages.

Dr Richardson said: “I am delighted to have won the award. The judges acknowledged the importance of the work and the advances we had made in the treatment strategy. In particular they noted that with all the hype surrounding MSC-based treatments of many diseases, the fact that we were hoping to start pre-clinical trials next year was a massive step towards finally realising the potential of MSCs in a clinical environment.

“They also commented on the difficulties I had overcome in finding an appropriate gel to complement the MSC differentiation work and in drawing in both commercial interest from the company which produces the gel and clinical interest from spinal surgeons who saw the potential of the treatment.”

Dr Judith Hoyland, head of the Intervertebral Disc Regeneration and Spinal Disease research group, said: “Dr Richardson has strived hard to overcome the numerous hurdles involved in such a complex process. As a result of his tireless dedication to the development of a clinically-viable tissue engineering strategy for treatment of low back pain, he was the ideal candidate to receive the young biotechnologist of the year award. I hope that it will spur him on to develop his full potential as a biotechnologist and become a credit to the burgeoning Northwest biotechnology sector.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>