Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-Off Treatment to Stop Back Pain – Using Patients’ Own Stem Cells

30.11.2006
A University of Manchester researcher has developed a treatment for lower back pain using the patient’s own stem cells, which could replace the use of strong painkillers or surgery that can cause debilitation, neither of which addresses the underlying cause.

Dr Stephen Richardson, of the University’s Division of Regenerative Medicine in the School of Medicine (FMHS), has developed the treatment; and in collaboration with German biotechnology company Arthrokinetics and internationally-renowned spinal surgeons Spinal Foundation are hoping to enter pre-clinical trials next year. It is expected to rapidly yield a marketable product which will revolutionise treatment of long-term low back pain.

As a result Dr Richardson has been named Northwest Young Biotechnologist of the Year (sponsored by Nature) at the North West Development Agency/Bionow awards.

Low back pain (LBP) affects a large proportion of the adult population at some point in their lives and in many of these cases it is persistent, eventually leading to debilitating pain. The majority of the cases of LBP are due to degeneration of the intervertebral disc (IVD), the soft tissue which separates the vertebrae in the spine and protects them from damage; it is the flexibility of this tissue that allows movement of the spine (bending, twisting etc). The IVD is comprised of a central gel-like tissue (nucleus pulposus or NP), surrounded by a fibrous ring of tissue (annulus fibrosus or AF). Over time the NP becomes dry and fibrous and cannot support the weight of the body, which means the disc becomes damaged and painful and this is the source of the LBP in many people.

Currently, treatments address the symptoms – mainly pain – using a combination of painkillers, physiotherapy or surgery, removing tissue to relieve the pain or fusing the vertebrae above and below the painful disc level together to remove the pain, although this also stops movement at that disc level. None of these options is ideal as they only treat the symptoms, not the cause, and are of limited long-term success.

The treatment Dr Richardson is developing uses a cell-based tissue engineering approach to regenerate the IVD at the affected level. This is achieved through the combination of the patients’ own mesenchymal stem cells (MSCs) and a naturally occurring collagen gel that can be implanted through a minimally-invasive surgical technique.

MSCs are a population of progenitor cells found in the bone marrow of adults which can differentiate into many different cell types in the body, including bone, cartilage, fat and muscle cells. Dr Richardson found that for several reasons he could not use cells from the IVD itself and thus spent a number of years developing a method of producing NP cells from MSCs. He, together with colleagues, now has an international patent on this method. It was the development of this method, combined with the establishment of collaborative links with a company to supply the gel and a surgeon to develop the implantation technique, which won Dr Richardson the award.

Dr Richardson explained: “Once we have extracted the bone marrow from the patient and have purified the MSCs, they will be grown in culture and our patented method of differentiation will be applied. They will then be embedded within a gel which can be implanted back into the patient through an arthroscope.

“The gel used, produced by Arthrokinetics, is based on a collagen that is a component of many tissues within the body, a totally natural product that is similar to the gel already used clinically for the treatment of articular cartilage defects. The ability to reimplant this within the body with an arthroscopic procedure – similar to an endoscopy, in which a camera is inserted through a narrow tube into the body – means that there is only a very small scar on the back and the patient could hopefully return home on the same day or the day after the surgery. Once implanted the differentiated MSCs would produce a new NP tissue with the same properties as the original and would both treat the underlying cause of the disease and remove the painful symptoms.”

The treatment has massive implications for the future of LBP treatment – with substantial NHS cost savings as patients could be treated quickly and effectively without any need for extended hospitalisation. In addition, as both the cause and the symptoms are treated, only one treatment should be needed in a lifetime and there would be no need for continuous treatments with painkillers and physiotherapy. The patient would therefore benefit and there are also implications for productivity in the workplace as a large number of work hours are lost every year due to sickness leave for low back pain. In the UK alone the combined figures for lost productivity and health-care costs due to low back pain run in the tens of millions of pounds a year and this will only increase as the population ages.

Dr Richardson said: “I am delighted to have won the award. The judges acknowledged the importance of the work and the advances we had made in the treatment strategy. In particular they noted that with all the hype surrounding MSC-based treatments of many diseases, the fact that we were hoping to start pre-clinical trials next year was a massive step towards finally realising the potential of MSCs in a clinical environment.

“They also commented on the difficulties I had overcome in finding an appropriate gel to complement the MSC differentiation work and in drawing in both commercial interest from the company which produces the gel and clinical interest from spinal surgeons who saw the potential of the treatment.”

Dr Judith Hoyland, head of the Intervertebral Disc Regeneration and Spinal Disease research group, said: “Dr Richardson has strived hard to overcome the numerous hurdles involved in such a complex process. As a result of his tireless dedication to the development of a clinically-viable tissue engineering strategy for treatment of low back pain, he was the ideal candidate to receive the young biotechnologist of the year award. I hope that it will spur him on to develop his full potential as a biotechnologist and become a credit to the burgeoning Northwest biotechnology sector.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>