Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Test Determines Aggressiveness of Neuroblastomas

13.11.2006
Neuroblastoma is among the types of cancer that particularly often affect children. Between one and three girls and boys in 100,000 are diagnosed with this growth of the nervous system before age 14. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum) and the University of Cologne have developed a method, based on the gene activity of tumor cells, for assessing the aggressiveness of neuroblastomas right at the time of diagnosis.

Neuroblastoma is unique in the sense that at least ten percent of tumors regress spontaneously without treatment, even if they have already started to metastasize. “Neuroblastoma takes a very variable course. In some cases, the tumor disappears by itself, while other patients die in spite of intensive treatment,” explains Dr. Frank Westermann of the Tumorgenetics Division headed by Professor Dr. Manfred Schwab. “Using our test it will be possible to assess the individual patient’s risk more accurately.” This will enable scientists not only to better customize treatment to the individual case, but also to save patients with favorable prognosis the unnecessary strain of chemotherapy.

In the largest neuroblastoma study worldwide, Dr. Westermann and Dr. Benedikt Brors of the DKFZ, jointly with Dr. Matthias Fischer of Cologne University, have investigated tumor material of 251 patients. The research project was supported by the National Genome Research Network (NGFN) and the German Cancer Aid (Deutsche Krebshilfe). The scientists identified, at first in 77 tumors, 144 genes whose activity is characteristic for the course of the disease. Some of these genes are active in neuroblastomas that tend to be more malignant, while others are read more intensively in relatively benign tumors. Using a gene chip (microarray), the scientists can now study these gene activities in tumor samples and subsequently predict the further course of the disease.

The investigators tested the gene chip in another 174 tumor samples. The genetic test proved to be highly reliable: The course of the disease was predicted with 93 percent accurateness. This is substantially better than with current methods of neuroblastoma classification. In addition, the genetic test was able to filter out patients who would not have been treated according to conventional categorization, but whose disease took an unexpectedly aggressive course. In these cases, early treatment could be life-saving.

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>