Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of post-stimulus activated release implies new mechanisms for dopamine release

17.10.2006
The neurotransmitter dopamine continues to be released for nearly an hour after neurons are stimulated, suggesting the existence of secondary mechanisms that allow for sustained availability of dopamine in different regions of the brain including areas critical for memory consolidation, drug induced plasticity and maintaining active networks during working memory, according to a University of Pittsburgh study being presented today at the 36th Annual Meeting of the Society for Neuroscience, held at the Georgia World Congress Center in Atlanta.

Determining the mechanisms that cause what is being called "post-stimulus activated release" and how they maintain dopamine levels could have important implications for understanding and treating neurological and psychiatric disorders caused by an imbalance of dopamine function including schizophrenia, attention deficit hyperactivity disorder, Tourette's syndrome, Parkinson's disease and addiction.

According to Bita Moghaddam, Ph.D., professor of neuroscience and psychiatry, who led the study, in addition to its clinical benefits, post-stimulus activated release can be used to explain how brief events that activate neurons for short periods of time can influence brain function long after the events. For example, it can be used to explain how smelling freshly baked cookies could evoke childhood memories of spending time with a beloved grandparent, leading a person to reminisce long after the smell is gone and take the unplanned or impulsive action of baking or buying cookies.

Dopamine is a neurotransmitter associated with learning and memory, motor control, reward perception and executive functions such as working memory, behavioral flexibility and decision making. When a novel or salient stimulus occurs, the dopamine neurons in the brain increase their firing rate, boosting the release of dopamine. The dopamine is diffused into the extracellular space of the brain until it can be transported or metabolized.

In a rat model, the researchers have been attempting to understand increases in extracellular levels of dopamine during behaviorally active states, such as completing a cognitive task or experiencing stressful situations and in response to the electrical stimulation of neurons. In their studies, they have observed that dopamine levels remain above the baseline long after neurons had been stimulated – from five to 20 minutes in the ventral tegmental area (VTA) and 40 to 100 minutes in the nucleus accumbens and prefrontal cortex.

Attempting to discern the cause of the elevated levels, researchers stimulated the VTA of the brain of a rat model by using an electrode. The VTA is a nucleus in the midbrain where dopamine neurons are located. After stimulating the neurons, the researchers measured the amount of dopamine in the extracellular fluid of the nucleus accumbens and prefrontal cortex – two areas where the VTA is known to send signals. They found that dopamine levels increased during stimulation, and remained elevated for an hour after stimulation.

Dopamine levels wane as dopamine is taken back into cells by an active transport system. Yet this active transport system is not abundant in the ventral striatum and prefrontal cortex areas, leading researchers to think that perhaps the dopamine levels remained elevated due to an excess that had yet to be absorbed. To test this hypothesis, they applied tetrodotoxin (TTX), a neurotoxin that blocks the active release of dopamine, to the nucleus accumbens and prefrontal cortex. TTX caused dopamine levels to drop, indicating that the dopamine levels remained elevated because dopamine was being actively released after the neurons fired and not because there was residual dopamine in the brain.

Dr. Moghaddam and colleagues are currently conducting experiments in efforts to identify the exact mechanism causing post-stimulus activated release.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>