Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of post-stimulus activated release implies new mechanisms for dopamine release

17.10.2006
The neurotransmitter dopamine continues to be released for nearly an hour after neurons are stimulated, suggesting the existence of secondary mechanisms that allow for sustained availability of dopamine in different regions of the brain including areas critical for memory consolidation, drug induced plasticity and maintaining active networks during working memory, according to a University of Pittsburgh study being presented today at the 36th Annual Meeting of the Society for Neuroscience, held at the Georgia World Congress Center in Atlanta.

Determining the mechanisms that cause what is being called "post-stimulus activated release" and how they maintain dopamine levels could have important implications for understanding and treating neurological and psychiatric disorders caused by an imbalance of dopamine function including schizophrenia, attention deficit hyperactivity disorder, Tourette's syndrome, Parkinson's disease and addiction.

According to Bita Moghaddam, Ph.D., professor of neuroscience and psychiatry, who led the study, in addition to its clinical benefits, post-stimulus activated release can be used to explain how brief events that activate neurons for short periods of time can influence brain function long after the events. For example, it can be used to explain how smelling freshly baked cookies could evoke childhood memories of spending time with a beloved grandparent, leading a person to reminisce long after the smell is gone and take the unplanned or impulsive action of baking or buying cookies.

Dopamine is a neurotransmitter associated with learning and memory, motor control, reward perception and executive functions such as working memory, behavioral flexibility and decision making. When a novel or salient stimulus occurs, the dopamine neurons in the brain increase their firing rate, boosting the release of dopamine. The dopamine is diffused into the extracellular space of the brain until it can be transported or metabolized.

In a rat model, the researchers have been attempting to understand increases in extracellular levels of dopamine during behaviorally active states, such as completing a cognitive task or experiencing stressful situations and in response to the electrical stimulation of neurons. In their studies, they have observed that dopamine levels remain above the baseline long after neurons had been stimulated – from five to 20 minutes in the ventral tegmental area (VTA) and 40 to 100 minutes in the nucleus accumbens and prefrontal cortex.

Attempting to discern the cause of the elevated levels, researchers stimulated the VTA of the brain of a rat model by using an electrode. The VTA is a nucleus in the midbrain where dopamine neurons are located. After stimulating the neurons, the researchers measured the amount of dopamine in the extracellular fluid of the nucleus accumbens and prefrontal cortex – two areas where the VTA is known to send signals. They found that dopamine levels increased during stimulation, and remained elevated for an hour after stimulation.

Dopamine levels wane as dopamine is taken back into cells by an active transport system. Yet this active transport system is not abundant in the ventral striatum and prefrontal cortex areas, leading researchers to think that perhaps the dopamine levels remained elevated due to an excess that had yet to be absorbed. To test this hypothesis, they applied tetrodotoxin (TTX), a neurotoxin that blocks the active release of dopamine, to the nucleus accumbens and prefrontal cortex. TTX caused dopamine levels to drop, indicating that the dopamine levels remained elevated because dopamine was being actively released after the neurons fired and not because there was residual dopamine in the brain.

Dr. Moghaddam and colleagues are currently conducting experiments in efforts to identify the exact mechanism causing post-stimulus activated release.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>