Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seals protect brain, conserve oxygen by turning off shivering response on icy dives

11.10.2006
Seals shiver when exposed to cold air but not when diving in chilly water, a finding that researchers believe allows the diving seal to conserve oxygen and minimize brain damage that could result from long dives.

The researchers presented the study at The American Physiological Society's conference "Comparative Physiology 2006: Integrating Diversity," in Virginia Beach, Va., October 8-11. The researchers, Arnoldus Schytte Blix, Petter H. Kvadsheim and Lars P. Folkow hail from the University of Tromsø, located above the Arctic Circle in Tromsø, Norway.

The research provides insight into how seals allow their bodies to cool (become hypothermic) during a dive, presumably to better cope with a lack of oxygen (hypoxia). Research into hypothermia and hypoxia is important because they are problems that affect people under a variety of circumstances. Doctors often are called upon to treat people who have suffered accidental hypothermia, for example, as a result of falling into the ocean or becoming lost during the winter. In addition, several hundred thousand people die or are irreversibly injured each year following cardiac arrest, stroke or respiratory disorders which cause inadequate oxygen supply to the brain, Folkow explained.

Folkow will present a second study on hypoxia, involving diving birds, at the conference. The study "Neuronal hypoxic tolerance in diving birds and mammals," examines how diving birds and seals preserve brain cell function in the face of oxygen deficits. The study is by Folkow, Stian Ludvigsen and Blix, of the University of Tromsø and Jan-Marino Ramirez of the University of Chicago.

Shivers produce warmth

Shivering is an involuntary response that consists of muscle contractions which produce warmth. Mammals and birds are physiologically programmed to shiver when body temperature drops below a certain "set-point."

While breathing air, seals shiver just like other animals. But when they dive below the surface in frigid water, shivering is switched off, the study found.

By shutting down the shivering response, a seal allows its body temperature to drop and achieves the benefits of hypothermia: a slower metabolism and lowered oxygen requirements which extends the dive time, Folkow said.

Taking the plunge

The seal experiment took place in a tank in which the seals took a series of experimental dives into cold water of 2-3° C. The researchers recorded shivering, heart rate, brain temperature and rectal temperature while the seals were on the surface and while they were diving.

The seals shivered on the surface but stopped or nearly stopped shivering when they dove, even though their bodies continued to cool. Their heart rates and temperatures dropped while they dove, but when they returned to the surface they restarted their shivering nearly immediately.

Seals have a remarkable capacity to store oxygen in their blood and muscles – four times as much as humans – to which they add this oxygen-conserving step of not shivering, Folkow said. By allowing body temperatures to drop, they slow metabolism and reduce oxygen demand. In addition, since shivering itself requires oxygen, there is an oxygen-conserving advantage to not shivering when diving.

In addition to slowing metabolism and generally reducing the need for oxygen, the researchers found that the seal's brain may cool about 3° C during the dives. The cooler brain requires less energy and oxygen and reduces the chance of damage caused by hypoxia, Folkow explained.

Achieved while remaining active

Seals have this physiological adaptation available just in case. This study found the seals can dive to more than 1,000 meters and for more than an hour. However, they usually take dives much shorter than their maximum capacity, and only occasionally perform very long dives. By limiting dive duration, seals maintain aerobic metabolism, avoid lactate buildup that occurs in the face of insufficient oxygen and require little time to recover, Folkow explained. Seals often spend 80-90% of their time at sea underwater, he said.

Seals in the wild occasionally dive for so long that they use nearly all their oxygen, but they can recover with these special adaptations. Humans cannot tolerate oxygen levels nearly so low as a seal can.

"Somehow they tolerate hypoxia better, we don't know why," Folkow said. The study of how seals handle this lack of oxygen may someday give us knowledge that is useful in treating people who have suffered severe hypoxia, although those advances are likely years in the future, he added.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>