Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seals protect brain, conserve oxygen by turning off shivering response on icy dives

Seals shiver when exposed to cold air but not when diving in chilly water, a finding that researchers believe allows the diving seal to conserve oxygen and minimize brain damage that could result from long dives.

The researchers presented the study at The American Physiological Society's conference "Comparative Physiology 2006: Integrating Diversity," in Virginia Beach, Va., October 8-11. The researchers, Arnoldus Schytte Blix, Petter H. Kvadsheim and Lars P. Folkow hail from the University of Tromsø, located above the Arctic Circle in Tromsø, Norway.

The research provides insight into how seals allow their bodies to cool (become hypothermic) during a dive, presumably to better cope with a lack of oxygen (hypoxia). Research into hypothermia and hypoxia is important because they are problems that affect people under a variety of circumstances. Doctors often are called upon to treat people who have suffered accidental hypothermia, for example, as a result of falling into the ocean or becoming lost during the winter. In addition, several hundred thousand people die or are irreversibly injured each year following cardiac arrest, stroke or respiratory disorders which cause inadequate oxygen supply to the brain, Folkow explained.

Folkow will present a second study on hypoxia, involving diving birds, at the conference. The study "Neuronal hypoxic tolerance in diving birds and mammals," examines how diving birds and seals preserve brain cell function in the face of oxygen deficits. The study is by Folkow, Stian Ludvigsen and Blix, of the University of Tromsø and Jan-Marino Ramirez of the University of Chicago.

Shivers produce warmth

Shivering is an involuntary response that consists of muscle contractions which produce warmth. Mammals and birds are physiologically programmed to shiver when body temperature drops below a certain "set-point."

While breathing air, seals shiver just like other animals. But when they dive below the surface in frigid water, shivering is switched off, the study found.

By shutting down the shivering response, a seal allows its body temperature to drop and achieves the benefits of hypothermia: a slower metabolism and lowered oxygen requirements which extends the dive time, Folkow said.

Taking the plunge

The seal experiment took place in a tank in which the seals took a series of experimental dives into cold water of 2-3° C. The researchers recorded shivering, heart rate, brain temperature and rectal temperature while the seals were on the surface and while they were diving.

The seals shivered on the surface but stopped or nearly stopped shivering when they dove, even though their bodies continued to cool. Their heart rates and temperatures dropped while they dove, but when they returned to the surface they restarted their shivering nearly immediately.

Seals have a remarkable capacity to store oxygen in their blood and muscles – four times as much as humans – to which they add this oxygen-conserving step of not shivering, Folkow said. By allowing body temperatures to drop, they slow metabolism and reduce oxygen demand. In addition, since shivering itself requires oxygen, there is an oxygen-conserving advantage to not shivering when diving.

In addition to slowing metabolism and generally reducing the need for oxygen, the researchers found that the seal's brain may cool about 3° C during the dives. The cooler brain requires less energy and oxygen and reduces the chance of damage caused by hypoxia, Folkow explained.

Achieved while remaining active

Seals have this physiological adaptation available just in case. This study found the seals can dive to more than 1,000 meters and for more than an hour. However, they usually take dives much shorter than their maximum capacity, and only occasionally perform very long dives. By limiting dive duration, seals maintain aerobic metabolism, avoid lactate buildup that occurs in the face of insufficient oxygen and require little time to recover, Folkow explained. Seals often spend 80-90% of their time at sea underwater, he said.

Seals in the wild occasionally dive for so long that they use nearly all their oxygen, but they can recover with these special adaptations. Humans cannot tolerate oxygen levels nearly so low as a seal can.

"Somehow they tolerate hypoxia better, we don't know why," Folkow said. The study of how seals handle this lack of oxygen may someday give us knowledge that is useful in treating people who have suffered severe hypoxia, although those advances are likely years in the future, he added.

Christine Guilfoy | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>