Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seals protect brain, conserve oxygen by turning off shivering response on icy dives

Seals shiver when exposed to cold air but not when diving in chilly water, a finding that researchers believe allows the diving seal to conserve oxygen and minimize brain damage that could result from long dives.

The researchers presented the study at The American Physiological Society's conference "Comparative Physiology 2006: Integrating Diversity," in Virginia Beach, Va., October 8-11. The researchers, Arnoldus Schytte Blix, Petter H. Kvadsheim and Lars P. Folkow hail from the University of Tromsø, located above the Arctic Circle in Tromsø, Norway.

The research provides insight into how seals allow their bodies to cool (become hypothermic) during a dive, presumably to better cope with a lack of oxygen (hypoxia). Research into hypothermia and hypoxia is important because they are problems that affect people under a variety of circumstances. Doctors often are called upon to treat people who have suffered accidental hypothermia, for example, as a result of falling into the ocean or becoming lost during the winter. In addition, several hundred thousand people die or are irreversibly injured each year following cardiac arrest, stroke or respiratory disorders which cause inadequate oxygen supply to the brain, Folkow explained.

Folkow will present a second study on hypoxia, involving diving birds, at the conference. The study "Neuronal hypoxic tolerance in diving birds and mammals," examines how diving birds and seals preserve brain cell function in the face of oxygen deficits. The study is by Folkow, Stian Ludvigsen and Blix, of the University of Tromsø and Jan-Marino Ramirez of the University of Chicago.

Shivers produce warmth

Shivering is an involuntary response that consists of muscle contractions which produce warmth. Mammals and birds are physiologically programmed to shiver when body temperature drops below a certain "set-point."

While breathing air, seals shiver just like other animals. But when they dive below the surface in frigid water, shivering is switched off, the study found.

By shutting down the shivering response, a seal allows its body temperature to drop and achieves the benefits of hypothermia: a slower metabolism and lowered oxygen requirements which extends the dive time, Folkow said.

Taking the plunge

The seal experiment took place in a tank in which the seals took a series of experimental dives into cold water of 2-3° C. The researchers recorded shivering, heart rate, brain temperature and rectal temperature while the seals were on the surface and while they were diving.

The seals shivered on the surface but stopped or nearly stopped shivering when they dove, even though their bodies continued to cool. Their heart rates and temperatures dropped while they dove, but when they returned to the surface they restarted their shivering nearly immediately.

Seals have a remarkable capacity to store oxygen in their blood and muscles – four times as much as humans – to which they add this oxygen-conserving step of not shivering, Folkow said. By allowing body temperatures to drop, they slow metabolism and reduce oxygen demand. In addition, since shivering itself requires oxygen, there is an oxygen-conserving advantage to not shivering when diving.

In addition to slowing metabolism and generally reducing the need for oxygen, the researchers found that the seal's brain may cool about 3° C during the dives. The cooler brain requires less energy and oxygen and reduces the chance of damage caused by hypoxia, Folkow explained.

Achieved while remaining active

Seals have this physiological adaptation available just in case. This study found the seals can dive to more than 1,000 meters and for more than an hour. However, they usually take dives much shorter than their maximum capacity, and only occasionally perform very long dives. By limiting dive duration, seals maintain aerobic metabolism, avoid lactate buildup that occurs in the face of insufficient oxygen and require little time to recover, Folkow explained. Seals often spend 80-90% of their time at sea underwater, he said.

Seals in the wild occasionally dive for so long that they use nearly all their oxygen, but they can recover with these special adaptations. Humans cannot tolerate oxygen levels nearly so low as a seal can.

"Somehow they tolerate hypoxia better, we don't know why," Folkow said. The study of how seals handle this lack of oxygen may someday give us knowledge that is useful in treating people who have suffered severe hypoxia, although those advances are likely years in the future, he added.

Christine Guilfoy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>