Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leveling the field for babies with persistent pulmonary hypertension

09.10.2006
If he can figure out which babies will be born unable to breathe properly, Dr. Stephen M. Black thinks he can help change that.

“When these kids are born, you have a short amount of time to intervene or you get brain damage,” says Dr. Black, cell and molecular physiologist at the Medical College of Georgia Vascular Biology Center.

Unfortunately, persistent pulmonary hypertension comes as a surprise in full-term babies, says Dr. Jatinder J.S. Bhatia, chief of the MCG Section of Neonatology. The pregnancy seems uneventful until the hours following birth when breathing trouble requires rapid transport to a neonatal intensive care unit.

“What happens in utero is that all your gas exchange is through the placenta, so there is only about 8 percent of cardiac output actually going through the lungs,” says Dr. Black. “When you are born, obviously there is 100 cardiac output and you need to breathe.”

When babies can’t breathe well, physicians quickly determine whether the primary problem is the heart or lungs, Dr. Bhatia says. When it’s the lungs, babies first get oxygen therapy and possibly mechanical ventilation. If it is pulmonary hypertension, the powerful vasodilator, nitric oxide, is used to reduce high pressures in the pulmonary circuit and allow the transition to a normal circulation. Neonatologists also have begun using the popular erectile dysfunction drug, Viagra, to dilate tiny pulmonary vessels.

If these therapies fail, they turn to the more invasive extracorporeal membrane oxygenation, which resembles heart-lung bypass used during heart surgery. This approach is most helpful for newborns with conditions such as pulmonary hypertension as well as aspirating waste products in utero, congenital heart disease and congenital diaphragmatic hernia.

Dr. Black’s focus is the babies whose vessels have become thick-walled, inflexible pipes that cannot transition to an elastic state. Flexibility enables adequate blood to get into the lungs so it can be replenished with oxygen then head back to the heart which pumps it out to the body.

“If you can keep the kids alive for four or five days, the blood vessels remodel back to what they should be,” says Dr. Black, who joined the MCG faculty in March. He wants vessels ready for their job at birth

He’s studying how factors that regulate blood vessel expansion go awry in the two to six babies per 1,000 with persistent pulmonary hypertension and finding many cards stacked again them.

“Basically the whole pathway is shot,” he says. “The main vasodilator in the lungs is nitric oxide and the main vasoconstrictor is endothelin. They have to be in very good balance. What happens in our animal model – and there is evidence that it happens in kids who die from this – is that nitric oxide synthase, the enzyme that makes nitric oxide, decreases in utero and endothelin levels increase. When you lose the vasodilator and you gain proliferative response, essentially the muscle cells just get bigger. The end result is these kids can die as soon as they are born.”

He and Dr. Jeffrey Fineman, a whole animal physiologist and physician at the University of California, San Francisco, are using sheep as a surgical model for this condition.

They have found one way endothelin enlarges smooth muscle cells on exterior blood vessel walls is by activating an enzyme that makes free radicals, which are reactive, unpaired electrons that work as signaling molecules.

Free radicals are fine, even necessary, as long as they are available in the proper numbers. But at least one of these radicals, hydrogen peroxide, escapes from smooth muscle cells into endothelial cells, which line blood vessels where, in a double-whammy to flexibility, it inhibits the expression and the activity of nitric oxide synthase.

“A whole host of enzymes are involved in vasodilation and a host of enzymes are involved in vasoconstriction. What happens in these children is all the vasoconstrictors go up and the vasodilators go down,” says Dr. Black. “We think hydrogen peroxide is a key molecule in there.”

In this unfortunate scenario, even nitric oxide malfunctions.

Nitric oxide dilates vessels by activating a protein that stimulates production of cyclic GMP. At low levels, hydrogen peroxide activates the protein that enables production of cyclic GMP, enabling a chain reaction that results in calcium being pumped out of smooth muscle cells and blood vessels relaxing. Endothelin does just the opposite.

“We have found that if you chronically give the cells hydrogen peroxide, it down regulates those enzymes. So your nitric oxide generation is decreased and the ability to activate cyclic GMP has gone away as well,” says Dr. Black.

As if that weren’t bad enough, levels of phosphodiesterase, an enzyme that degrades cyclic GMP, rise, Dr. Black suspects because of the increase in oxidative stress. This phosphodiesterase increase is the reason Viagra, a phosphodiesterase inhibitor, is used for these babies.

Now that they better understand the complex scenario, Dr. Black and his colleagues want to look at the plasma of mothers and babies with persistent pulmonary hypertension for biomarkers that predict a baby is headed for trouble.

They also are looking at therapies, probably antioxidant therapy delivered right to cells, to stop signals from free radicals that result in bulky, dysfunctional pulmonary blood vessels at birth. “The driving force in these babies is the free radicals that make the muscles grow,” says Dr. Black.

Dr. Black’s other primary research interest is perinatal stroke, in which nitric oxide synthase also appears a key player and a bad one. “Nitric oxide gets activated in stroke and kills neurons,” he says. He and colleague Dr. Donna Ferriero, pediatric neurologist at the University of California, San Francisco, have developed a culture model to study what happens to the hippocampus when it’s deprived of critical oxygen and glucose. They are dissecting the no-doubt, complex chain of signaling that leads to neuronal death in babies and looking for viral delivery systems that can help protect brain cells.

Dr. Black is principal investigator on four National Institutes of Health grants, an American Heart Association-Pacific Mountain Affiliates grant and a grant from Foundation Leducq, a French foundation supporting international efforts to combat cardiovascular disease. He recently was appointed to the National Heart, Lung and Blood Institute’s Board of Scientific Councilors and NHLBI’s Program Project Review Committee. Dr. Black came to MCG from the University of Montana and previously worked at the University of California, San Francisco, and Northwestern University.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>