Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Mint' pain killer takes leaf out of ancient medical texts

A new synthetic treatment inspired by ancient Greek and Chinese remedies could offer pain relief to millions of patients with arthritis and nerve damage, a new University of Edinburgh study suggests.

The Greek scholar Hippocrates treated sprains, joint pains and inflammation by cooling the skin, and traditional Chinese remedies used mint oil to the same end. Now scientists have discovered that cooling chemicals which have the same properties as mint oil have a dramatic pain-killing effect when applied in small doses to the skin. Unlike conventional pain killers, these compounds are likely to have minimal toxic side-effects, especially because they are applied externally to the skin. This should mean they are ideal for chronic pain patients for whom conventional pain killers often do not work.

The Edinburgh study sets out exactly how the 'mint oil' compounds (and related more powerful chemicals) work. They act through a recently discovered receptor (a protein which is capable of binding with these chemicals) which is found in a small percentage of nerve cells in the human skin. The scientists have found that when this receptor, called TRPM8, is activated by the cooling chemicals or cool temperatures, it inhibits the 'pain messages' being sent from the locality of the pain to the brain. Thus, the new treatment makes good use of the body's own mechanisms for killing pain.

The findings would doubtless have been of interest to Hippocrates, the founding father of modern medicine. Writing in the fifth century BC, in chapter 5 of his classic text, Aphorisms, he stated: "Swellings and pains in the joints, ulceration, those of a gouty nature, and sprains, are generally improved by a copious affusion of cold water, which reduces the swelling, and removes the pain; for a moderate degree of numbness removes pain."

Professor Susan Fleetwood-Walker, who jointly led the study with Dr Rory Mitchell, says:

"This discovery of the pain-relieving properties of mint oil and related compounds has great potential for alleviating the suffering of millions of chronic pain patients, including those with arthritis or those who have had nerve damage or spinal injury following major accidents. Conventional painkillers such as morphine are often ineffective in cases of chronic pain, and simply lowering the temperature of the skin is too inexact."

"Our discovery means that patients can be given low doses of a powerful pain killer, delivered through the skin, without side effects. We hope clinical trials on the compounds will begin within the year."

Linda Menzies | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>