Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin pathway component explains insulin resistance, age-associated metabolic syndrome

09.08.2006
Fly genetics reveal key workings of Atkins Diet

Metabolic syndrome, an aging-associated group of disorders that includes insulin resistance, heart disease and high lipid levels, may be treatable thanks to a newly discovered role for a regulatory gene, according to a team of scientists at the Burnham Institute for Medical Research.

In addition, the scientists found that this single gene may contribute to the body's responses to caloric restriction and may explain some aspects of the Atkins Diet.

The gene's new function was discovered in Drosophila fruit flies; previously it was associated solely with the control of growth. Until now, how the gene regulates insulin, as well as other symptoms of metabolic syndrome, was largely unknown. The study was conducted by Sean Oldham, Ph.D., assistant professor, and his colleagues at the Burnham and the National Institute on Alcoholism and Alcohol Abuse. Oldham's findings appear in the journal Cell Metabolism to be released on August 8th.

Using fruit flies bred with a newly created mutant form of the gene TOR (short for target of rapamycin), Oldham and his colleagues were able to determine how the TOR pathway interacted with other important regulators of insulin, glucose and lipid metabolism.

TOR is an ancient gene, found in nearly all animal and plant cells. The researchers discovered that their new mutant fly reduced TOR function, allowing them to observe what happens when TOR's influence is removed.

Reductions in TOR function lowered glucose and lipid levels in the body. They also blocked the function of another important insulin regulator, a factor called FOXO, which is known to be a critical mediator of insulin signals and therefore glucose and lipid metabolism. In addition, flies with the mutated form of TOR had longer life spans than control flies.

"It has been unclear how TOR signaling affects the insulin pathway," said Oldham. "Our study adds another dimension to TOR's activity by revealing unexpected and novel levels of beneficial regulation of insulin metabolism, by reducing insulin resistance. This study provides the first details of how TOR may regulate energy homeostasis and responses to aging, in particular the coordination of weight reduction effects caused by caloric restriction and, in humans, it may explain the effects of the Atkins diet. It suggests that reducing TOR function could lead to a possible treatment for any or all symptoms of metabolic syndrome and insulin resistance."

Oldham's group, in collaboration with Dr. Rolf Bodmer at Burnham, showed that reducing TOR function also blocks the age-dependent decline of heart function, providing a partial explanation for why excess calories from overeating can lead to resistance to insulin's ability to process sugars and may contribute to reduced heart function.

Dr. Oldham and his colleagues are continuing their search to understand how TOR mediates caloric restriction, aging and other effects on insulin signaling and metabolism. They want to understand TOR's role in the relationship between growth, metabolism and aging, both in healthy individuals and individuals with metabolic diseases. The researchers also are screening possible drugs that could treat metabolic syndrome by reducing TOR function.

"This study provides the first direct evidence that reducing TOR function could be clinically beneficial to counter insulin resistance, metabolic syndrome and diabetes," said Oldham. "We believe further studies on fruit flies are invaluable to discovering more details about this pathway, and will give us indispensable insight into pathological aspects of aging and senescence."

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>