Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical expertise available wherever emergencies occur

28.07.2006
Emergency personnel often lack the trauma expertise necessary to treat victims of severe accidents or other emergencies. Some victims die because they do not reach hospital emergency rooms fast enough. But now a system for remote treatment could help improve survival rates.

The DICOEMS project has developed a wireless technology platform enabling doctors in hospital emergency rooms to remotely manage treatment of accident and other emergency victims. With specially equipped handheld computers or smart phones, paramedics and other emergency personnel first on the scene can send images and critical patient information, including vital data such as pulse, respiration, and ECG, to specialists at hospital emergency departments. Doctors can monitor the patient's condition via streaming video from the ambulance, make a diagnosis and provide detailed medical procedures for paramedics to follow.

"DICOEMS could significantly improve survival rates for victims of accidents or other medical emergencies by reducing the chance of inappropriate treatment," says Matteo Colombo, a technical specialist at Synergia 2000, the Milan-based project coordinator. "The system will improve decision support, diagnosis and risk management in critical situations occurring far from hospital emergency rooms," says Colombo.

With DICOEMS's global positioning system, central emergency systems can check an ambulance's position and tell the driver the fastest, most efficient route to the emergency site, and then from the site to the hospital. Central switchboard operators will have access to a specialised database allowing them to direct ambulances to the hospital best equipped to treat the patient's condition.

The project also sought to improve use of patient data. "We found out that there was a big gap in how medical information from an emergency was stored, so emergency-intervention data was not followed up on properly and not available to other health-care providers. This is especially a problem if the patient has a recurring condition," says Colombo.

DICOEMS employs a Grid network management system to efficiently integrate geographically dispersed and often heterogeneous databases. In an emergency, DICOEMS could allow identification of patients and access to their recent medical history, before the ambulance reaches the hospital. The system's multi-channel environment could also enable a patient's personal physician to remotely participate in his or her treatment.

An important component of the system is a text-search tool for matching patient clinical data with the most appropriate hospital and doctors for his or her problems. "In Monza Emergency Center ([using the free, single emergency telephone number,] 118), we tested this function with a database of cardiovascular terminology. This way, emergency switchboard operators can type in key words describing a cardiological emergency, and the system returns the most suitable hospitals for the patient's condition, also noting their availability," says Colombo.

DICOEMS has conducted two major pilot projects. The main Italian emergency services tested the remote emergency system, and the UK partner, Guy's and St. Thomas Hospital NHS Trust, tested the data integration and transfer capacity. "We hope to arrange an agreement allowing Guy's and St. Thomas Hospital to serve as the bridge between the DICOEMS Italian organisation and the UK's entire NHS system," says Colombo.

The DICOEMS system is scheduled to go into use by Italian ambulance centres by year's end, following approval by local authorities. "In Italy, there is already a strong willingness by ambulance associations to use the new system," says Colombo. "We have also received positive feedback from the European Commission," says Colombo.

The next step is to find partners to exploit the new technology. "In Eastern Europe, since there are no computer-assisted programs like this, DICOEMS could be sold as a whole system. Similar, though less advanced, systems already exist in Western Europe, so these countries could implement modules. DICOEMS is very flexible," concludes Colombo.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>