Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests cause of neurodegeneration in Huntington’s disease

31.05.2006


The severe neurodegeneration associated with HuntingtonÕs disease may result from molecular mutations that block the transport of nutrients within cells. Findings from the Emory University School of Medicine indicate that the mutant huntingtin protein limits the efforts of the huntingtin-associated protein-1 (HAP1) to provide nutrients to growing neurons, or neurites. Without those nutrients, neurites fail to develop and mature neurons degenerate.



Huntington’s disease was first identified more than 125 years ago, and often inhibits speech, movement, reasoning and memory. The result of an abnormal Huntington gene, the hereditary disorder is estimated to affect one out of every 10,000 people. Though some current pharmacological treatments do address symptoms, scientists have been unable to stop the disease’s progression.

However, scientists at Emory are making headway in the search for a cure. The findings that appear in the May 31 issue of the Journal of Neuroscience are the latest of more than a decade of Huntington’s disease-related discoveries led by Xiao-Jiang Li, PhD, professor of human genetics at Emory University School of Medicine.


Juan Rong, doctoral student in the neuroscience graduate program at the Emory University School of Medicine, is the lead author of the article. The senior author, Dr. Li, first discovered the protein HAP1 as a postdoctoral fellow in 1995. In previous articles, he has identified the importance of HAP1 to the normal functioning of the hypothalamus, a region of the brain that acts as a central switchboard to regulate feeding and other body functions. Earlier this year, Dr. Li’s group published an article identifying HAP1Õs role connecting insulin to the hypothalamus in the journal Nature Medicine.

"This protein is very important," says Dr. Li. "When an animal does not have HAP1 it dies after birth. Certainly, it’s essential for differentiation and survival of some neurons in the brain."

In this latest paper, Dr. Li, Ms. Rong, and their colleagues used cellular models to show that HAP1 normally links to transport proteins, including the growth factor receptor tyrosine kinase (TrkA), in growing neurites. HAP1 protects TrkA from degrading, ensuring the neurites continue to develop. This trafficking function is regulated by the addition of phosphate and oxygen to the HAP1 protein, a process known as phosphorylation.

However, when mutant huntingtin is present, the Emory researchers have found that this disease protein stops HAP1 from fulfilling its trafficking function. HAP1 cannot prevent the degradation of TrkA. The insufficient amount of TrkA cannot maintain the normal function of nerve terminals.

Although the discovery that HAP1 works as a transporter and plays a crucial role in neuronal function was obtained from cell models, it will assist scientists as they continue to look for a cure for Huntington’s disease. Dr. Li’s current experiments involve selective HAP1 deletions from neurons in animal models, and his results are sure to offer relevant clues to the mechanisms behind HuntingtonÕs disease.

Says Dr. Li, "If we can find the pathogenesis for Huntington’s disease, or if we know how the mutant huntingtin affects the transporting inside cells, maybe then we can find some effective treatment to prevent this kind of defect."

Research into other neurodegenerative disorders may also benefit from a thorough understanding of HAP1. "This work also has implications for understanding the normal physiological processing for neuronal functioning," says Dr. Li.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>