Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests cause of neurodegeneration in Huntington’s disease

31.05.2006


The severe neurodegeneration associated with HuntingtonÕs disease may result from molecular mutations that block the transport of nutrients within cells. Findings from the Emory University School of Medicine indicate that the mutant huntingtin protein limits the efforts of the huntingtin-associated protein-1 (HAP1) to provide nutrients to growing neurons, or neurites. Without those nutrients, neurites fail to develop and mature neurons degenerate.



Huntington’s disease was first identified more than 125 years ago, and often inhibits speech, movement, reasoning and memory. The result of an abnormal Huntington gene, the hereditary disorder is estimated to affect one out of every 10,000 people. Though some current pharmacological treatments do address symptoms, scientists have been unable to stop the disease’s progression.

However, scientists at Emory are making headway in the search for a cure. The findings that appear in the May 31 issue of the Journal of Neuroscience are the latest of more than a decade of Huntington’s disease-related discoveries led by Xiao-Jiang Li, PhD, professor of human genetics at Emory University School of Medicine.


Juan Rong, doctoral student in the neuroscience graduate program at the Emory University School of Medicine, is the lead author of the article. The senior author, Dr. Li, first discovered the protein HAP1 as a postdoctoral fellow in 1995. In previous articles, he has identified the importance of HAP1 to the normal functioning of the hypothalamus, a region of the brain that acts as a central switchboard to regulate feeding and other body functions. Earlier this year, Dr. Li’s group published an article identifying HAP1Õs role connecting insulin to the hypothalamus in the journal Nature Medicine.

"This protein is very important," says Dr. Li. "When an animal does not have HAP1 it dies after birth. Certainly, it’s essential for differentiation and survival of some neurons in the brain."

In this latest paper, Dr. Li, Ms. Rong, and their colleagues used cellular models to show that HAP1 normally links to transport proteins, including the growth factor receptor tyrosine kinase (TrkA), in growing neurites. HAP1 protects TrkA from degrading, ensuring the neurites continue to develop. This trafficking function is regulated by the addition of phosphate and oxygen to the HAP1 protein, a process known as phosphorylation.

However, when mutant huntingtin is present, the Emory researchers have found that this disease protein stops HAP1 from fulfilling its trafficking function. HAP1 cannot prevent the degradation of TrkA. The insufficient amount of TrkA cannot maintain the normal function of nerve terminals.

Although the discovery that HAP1 works as a transporter and plays a crucial role in neuronal function was obtained from cell models, it will assist scientists as they continue to look for a cure for Huntington’s disease. Dr. Li’s current experiments involve selective HAP1 deletions from neurons in animal models, and his results are sure to offer relevant clues to the mechanisms behind HuntingtonÕs disease.

Says Dr. Li, "If we can find the pathogenesis for Huntington’s disease, or if we know how the mutant huntingtin affects the transporting inside cells, maybe then we can find some effective treatment to prevent this kind of defect."

Research into other neurodegenerative disorders may also benefit from a thorough understanding of HAP1. "This work also has implications for understanding the normal physiological processing for neuronal functioning," says Dr. Li.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>