Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests cause of neurodegeneration in Huntington’s disease

31.05.2006


The severe neurodegeneration associated with HuntingtonÕs disease may result from molecular mutations that block the transport of nutrients within cells. Findings from the Emory University School of Medicine indicate that the mutant huntingtin protein limits the efforts of the huntingtin-associated protein-1 (HAP1) to provide nutrients to growing neurons, or neurites. Without those nutrients, neurites fail to develop and mature neurons degenerate.



Huntington’s disease was first identified more than 125 years ago, and often inhibits speech, movement, reasoning and memory. The result of an abnormal Huntington gene, the hereditary disorder is estimated to affect one out of every 10,000 people. Though some current pharmacological treatments do address symptoms, scientists have been unable to stop the disease’s progression.

However, scientists at Emory are making headway in the search for a cure. The findings that appear in the May 31 issue of the Journal of Neuroscience are the latest of more than a decade of Huntington’s disease-related discoveries led by Xiao-Jiang Li, PhD, professor of human genetics at Emory University School of Medicine.


Juan Rong, doctoral student in the neuroscience graduate program at the Emory University School of Medicine, is the lead author of the article. The senior author, Dr. Li, first discovered the protein HAP1 as a postdoctoral fellow in 1995. In previous articles, he has identified the importance of HAP1 to the normal functioning of the hypothalamus, a region of the brain that acts as a central switchboard to regulate feeding and other body functions. Earlier this year, Dr. Li’s group published an article identifying HAP1Õs role connecting insulin to the hypothalamus in the journal Nature Medicine.

"This protein is very important," says Dr. Li. "When an animal does not have HAP1 it dies after birth. Certainly, it’s essential for differentiation and survival of some neurons in the brain."

In this latest paper, Dr. Li, Ms. Rong, and their colleagues used cellular models to show that HAP1 normally links to transport proteins, including the growth factor receptor tyrosine kinase (TrkA), in growing neurites. HAP1 protects TrkA from degrading, ensuring the neurites continue to develop. This trafficking function is regulated by the addition of phosphate and oxygen to the HAP1 protein, a process known as phosphorylation.

However, when mutant huntingtin is present, the Emory researchers have found that this disease protein stops HAP1 from fulfilling its trafficking function. HAP1 cannot prevent the degradation of TrkA. The insufficient amount of TrkA cannot maintain the normal function of nerve terminals.

Although the discovery that HAP1 works as a transporter and plays a crucial role in neuronal function was obtained from cell models, it will assist scientists as they continue to look for a cure for Huntington’s disease. Dr. Li’s current experiments involve selective HAP1 deletions from neurons in animal models, and his results are sure to offer relevant clues to the mechanisms behind HuntingtonÕs disease.

Says Dr. Li, "If we can find the pathogenesis for Huntington’s disease, or if we know how the mutant huntingtin affects the transporting inside cells, maybe then we can find some effective treatment to prevent this kind of defect."

Research into other neurodegenerative disorders may also benefit from a thorough understanding of HAP1. "This work also has implications for understanding the normal physiological processing for neuronal functioning," says Dr. Li.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>