Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising treatment for Huntington’s disease soon to be tested clinically

19.04.2006


At the Institut Curie, CNRS and Inserm researchers have shown that cysteamine, which is already used to treat a rare disease called cystinosis, prevents the death of neurons in Huntington’s disease. Like Alzheimer’s and Parkinson’s, Huntington’s disease, is characterized by the abnormal death of neurons.


A protein that “releases” BDNF The nuclei in these two neuronal cells appear blue. The cell on the right has been treated with cysteamine, and so neuroprotective BDNF is progressively secreted from the Golgi apparatus, which appears yellow, and spreads around the nucleus within the cytoplasm. This reorganization results in better release of neuroprotective BDNF. © S. Humbert-F. Saudou/Institut Curie


A protein that “releases” BDNF BDNF (green) and clathrin (red), a marker of BDNF-containing vesicles, are abundant in the Golgi apparatus of neurons. © S. Humbert-F. Saudou/Institut Curie



Cysteamine raises neuronal levels of BDNF protein, a trophic factor which is depleted in Huntington’s disease, and by assaying BDNF in the blood it is possible to evaluate the effect of treatment. If other studies confirm these results, cysteamine could soon be used to treat Huntington’s disease, and BDNF could serve as a biomarker of its efficacy.

Huntington’s disease is a rare (1 in 10 000 people) neurological condition whose onset occurs between the ages of 35 and 50. The most striking symptoms are involuntary abnormal movements of the limbs, head and neck. These are accompanied by mental symptoms (anxiety, irritability, depression) and intellectual deterioration leading to dementia. Death occurs 15 to 20 years after disease onset as a result of complications (pulmonary embolism, pneumonia, other infection).


Clinical diagnosis is often difficult and time-consuming because the symptoms are highly variable and easy to confuse with psychological disorders. It must be confirmed by examination of the brain (by magnetic resonance imaging) or by genetic testing.

A mutant protein: huntingtin

Huntington’s disease is an autosomal dominant inherited disorder: if one of the two parents carries the mutant gene, 50% of the offspring will inherit this mutation and one day develop the disease. The IT15 gene responsible for the disease is located on chromosome 4 and encodes a protein called huntingtin, whose function is unknown. Normal huntingtin contains repeats of glutamine, an amino acid, but when there are more than 35 to 40 glutamines, huntingtin is considered to be mutant and induces the death of neurons, thereby causing the disease. Symptoms appear increasingly early as the number of glutamine repeats increases.

The same type of mutation causes other neurodegenerative diseases, each of which specifically affects different regions of the brain. In Huntington’s disease, there is progressive loss of neurons of the striatum, a region of the brain involved in the control of movement.

Thwarting apoptosis of neurons

At the Institut Curie, Frédéric Saudou and Sandrine Humbert(1) have already shown that brain-derived neurotrophic factor (BDNF)(2), when present in adequate amounts in the striatal neurons, blocks the effect of mutant huntingtin(3). Conversely, when BDNF levels decrease, the disease progresses. In patients with Huntington’s disease, BDNF levels in the striatal neurons are subnormal.

Under the direction of Frédéric Saudou and Sandrine Humbert, Maria Borell-Pagès has now shown in a mouse model of Huntington’s disease that cysteamine raises BDNF levels in striatal neurons. Cysteamine stimulates the secretion of BDNF, which explains its neuroprotective effect in different murine models of the disease. Cysteamine is already used clinically to treat a rare childhood disease called cystinosis(4).

The present study also demonstrates that BDNF, which can be assayed in blood, can be used as a biomarker. BDNF levels are decreased in animal models of Huntington’s disease, and are raised by cysteamine. Assay of BDNF in the blood should therefore enable evaluation of the efficacy of cysteamine treatment. A national, multicenter clinical trial is scheduled to begin by the end of 2006, and will test the effect of cysteamine and the value of BDNF as a biomarker in about 100 patients.

If these conclusions are confirmed clinically, cysteamine could become a routine treatment for Huntington’s disease.

Catherine Goupillon | alfa
Further information:
http://www.jci.org/
http://www.curie.fr

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>