Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising treatment for Huntington’s disease soon to be tested clinically

19.04.2006


At the Institut Curie, CNRS and Inserm researchers have shown that cysteamine, which is already used to treat a rare disease called cystinosis, prevents the death of neurons in Huntington’s disease. Like Alzheimer’s and Parkinson’s, Huntington’s disease, is characterized by the abnormal death of neurons.


A protein that “releases” BDNF The nuclei in these two neuronal cells appear blue. The cell on the right has been treated with cysteamine, and so neuroprotective BDNF is progressively secreted from the Golgi apparatus, which appears yellow, and spreads around the nucleus within the cytoplasm. This reorganization results in better release of neuroprotective BDNF. © S. Humbert-F. Saudou/Institut Curie


A protein that “releases” BDNF BDNF (green) and clathrin (red), a marker of BDNF-containing vesicles, are abundant in the Golgi apparatus of neurons. © S. Humbert-F. Saudou/Institut Curie



Cysteamine raises neuronal levels of BDNF protein, a trophic factor which is depleted in Huntington’s disease, and by assaying BDNF in the blood it is possible to evaluate the effect of treatment. If other studies confirm these results, cysteamine could soon be used to treat Huntington’s disease, and BDNF could serve as a biomarker of its efficacy.

Huntington’s disease is a rare (1 in 10 000 people) neurological condition whose onset occurs between the ages of 35 and 50. The most striking symptoms are involuntary abnormal movements of the limbs, head and neck. These are accompanied by mental symptoms (anxiety, irritability, depression) and intellectual deterioration leading to dementia. Death occurs 15 to 20 years after disease onset as a result of complications (pulmonary embolism, pneumonia, other infection).


Clinical diagnosis is often difficult and time-consuming because the symptoms are highly variable and easy to confuse with psychological disorders. It must be confirmed by examination of the brain (by magnetic resonance imaging) or by genetic testing.

A mutant protein: huntingtin

Huntington’s disease is an autosomal dominant inherited disorder: if one of the two parents carries the mutant gene, 50% of the offspring will inherit this mutation and one day develop the disease. The IT15 gene responsible for the disease is located on chromosome 4 and encodes a protein called huntingtin, whose function is unknown. Normal huntingtin contains repeats of glutamine, an amino acid, but when there are more than 35 to 40 glutamines, huntingtin is considered to be mutant and induces the death of neurons, thereby causing the disease. Symptoms appear increasingly early as the number of glutamine repeats increases.

The same type of mutation causes other neurodegenerative diseases, each of which specifically affects different regions of the brain. In Huntington’s disease, there is progressive loss of neurons of the striatum, a region of the brain involved in the control of movement.

Thwarting apoptosis of neurons

At the Institut Curie, Frédéric Saudou and Sandrine Humbert(1) have already shown that brain-derived neurotrophic factor (BDNF)(2), when present in adequate amounts in the striatal neurons, blocks the effect of mutant huntingtin(3). Conversely, when BDNF levels decrease, the disease progresses. In patients with Huntington’s disease, BDNF levels in the striatal neurons are subnormal.

Under the direction of Frédéric Saudou and Sandrine Humbert, Maria Borell-Pagès has now shown in a mouse model of Huntington’s disease that cysteamine raises BDNF levels in striatal neurons. Cysteamine stimulates the secretion of BDNF, which explains its neuroprotective effect in different murine models of the disease. Cysteamine is already used clinically to treat a rare childhood disease called cystinosis(4).

The present study also demonstrates that BDNF, which can be assayed in blood, can be used as a biomarker. BDNF levels are decreased in animal models of Huntington’s disease, and are raised by cysteamine. Assay of BDNF in the blood should therefore enable evaluation of the efficacy of cysteamine treatment. A national, multicenter clinical trial is scheduled to begin by the end of 2006, and will test the effect of cysteamine and the value of BDNF as a biomarker in about 100 patients.

If these conclusions are confirmed clinically, cysteamine could become a routine treatment for Huntington’s disease.

Catherine Goupillon | alfa
Further information:
http://www.jci.org/
http://www.curie.fr

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>