Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oops! Researchers publish new findings on the brain’s response to costly mistakes

12.04.2006


It happens to all of us, no matter how hard we try. Whether it’s deleting a computer file and realizing a split-second later that we can’t get it back, or dropping a bag of groceries, or realizing that our gas tank is nearly empty on a lonely stretch of highway, we all make mistakes that aren’t just annoying, but potentially costly.



Now, a team of University of Michigan researchers has looked inside the human brain and captured the instant when someone makes a costly mistake. What they’ve found is interesting by itself, but may also help scientists understand mental health problems such as obsessive-compulsive disorder, or OCD.

In general, the U-M scientists found that a particular part of the brain called the rostral anterior cingulate cortex, or rACC, becomes much more active when a person realizes he or she has made an error that carries consequences – for instance, losing money.


By contrast, the same area of the brain doesn’t show the same level of activity when the mistake doesn’t carry a penalty, or even when a correct action carries a reward. The rACC is thought to be involved with emotional responses, and scientists had suspected it might also be involved in response to costly errors. But this is the first brain-imaging study to test that idea.

Interestingly, the U-M team had previously shown that the rACC area became much more active in response to a no-penalty error in the brains of a small group of OCD patients, compared to people without the condition. OCD is often characterized by an untoward anxiety or fear about errors or failures in certain aspects of everyday life, with repetitive patterns of behavior to ward off or prevent such events.

The new research, published in the Journal of Neuroscience, involved 12 healthy adults who had their brains scanned using a powerful functional MRI (fMRI) imaging machine, while they were asked to respond to a series of 360 visual-based tests.

Some of the tests carried a monetary reward between 25 cents and $2, while others carried penalties of the same size. Still others carried no reward or penalty. The participants were told they had a $10 "credit" to begin, and that they would receive real cash depending on their balance at the end.

The participants had to correctly, and within a deadline of a few hundred milliseconds, press a button corresponding to one of two alphabetic letter pairs. They were instructed to determine which letter was the odd one out in a series of other letters. Some of the letter sequences were more confusing than others. They received immediate feedback telling them if they were wrong or too late in responding.

"In general, the response to a mistake that cost them money was greater than the response to other mistakes, and the involvement of the rACC suggests the importance of emotions in decision and performance-monitoring processes," says Stephan Taylor, M.D., an associate professor in the Department of Psychiatry at the U-M Medical School and lead author of the new paper. "It’s very interesting to us that the same part of the brain that responded in our OCD study on regular, no-cost errors also responded in healthy individuals when we made the error count more."

The new research confirms previous U-M studies using a different brain-activity monitoring technique and led by senior author William Gehring, Ph.D., Arthur F. Thurnau Professor of Psychology in the U-M College of Literature, Science, and the Arts and director of the U-M Human Brain Electrophysiology Laboratory.

For more than a decade, Gehring has used a measuring tool known as the event-related potential or ERP to study brain responses to various situations, assessing changes in electrical activity through sensors arranged on a mesh cap that is placed on the head. The method is similar to techniques used to study the brains of people with epilepsy or sleep problems, but the electrical signal from the brain is processed in a different way. In prior studies, Gehring and his colleagues observed a distinct brain electrical response to errors, dubbing it ERN for "error-related negativity."

Using ERP, Gehring and his colleagues localized the brain’s response to errors to the vicinity of the rACC, a larger region of the brain known as the medial frontal cortex. Working with Joe Himle, Ph.D., and Laura Nisenson, Ph.D., from the U-M Anxiety Disorders Program in the Department of Psychiatry, he performed a study in OCD patients that showed heightened response to errors in the same area.

Now, the fMRI technique has allowed the researchers to localize this response even more precisely. The fMRI scanner uses magnetic fields to create images based on blood flow, and can detect tiny changes in the rate of blood flow in and out of various areas of the brain. The more blood flowing to a specific area, the more active the cells in that area are – and therefore, the more processing that is going on in those brain cells.

"We hypothesized that the brain response to errors was involved in an emotional reaction to making an error," says Gehring. "Our new fMRI result not only confirms this, but it also allows us to pinpoint the area in the brain that shows the exaggerated error response."

Taylor, who treats patients with psychiatric disorders, says the next step is to study patients using the same test as was used in healthy participants. The researchers also hope to study the impact of cognitive behavioral therapy, a form of "talk therapy", on OCD patients’ response to errors. They are currently recruiting participants for that study.

"It appears to us so far that OCD patients may have a hyperactive response to making errors, with increased worry and concern about having done something wrong," he says. "We hope that this kind of research will help us get a handle on this condition and see which normal brain circuits have gone awry in people with OCD." The new finding does not have immediate implications for the treatment of OCD, Taylor cautions, but further research could help lead to more tailored treatment designed for each patient. The research team hopes to study people with depression as well.

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu
http://www.med.umich.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>