Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Looking’ at Eyeless from two directions

09.03.2006


When Dr. Rui Chen, assistant professor in the Baylor College of Medicine Human Genome Sequencing Center, sought to understand further the protein called Eyeless, he faced a dilemma.



Eyeless is a transcription factor, which means one of its major activities is to turn off or turn on other genes that have an effect on eye development later in the process. It is so powerful that when it is inserted into almost any tissues of the fruit fly, eyes grow – often in unexpected places.

Because Eyeless is a critical factor in the development of eyes in fruit flies or Drosophila, (a common model organism for studying how different organs grow), understanding the genes it affects could offer key clues into how the organs for sight actually develop in fruit flies and ultimately people.


One method for locating these genes is called a microarray, a tiny DNA chip used to identify specific sequences of genetic material. A microarray can provide hundreds of candidate genes – too many to be useful. Another method is to use bioinformatics and computers to predict where transcription factors bind, but this can give thousands of candidate genes. Again, that’s too much information to be valuable.

Chen, however, took a different tack. He used both methods. Then he dealt with only the genes and binding sequences that were found by both. Of the 300 genes found by microarray and 10,000 or more by the binding site technique, only 21 were found by both.

Because 11 of these were known to play a key role in eye development, he knew he was on the right track. A report of his work appears online today in the journal Genome Research.

"The reason I like this project is that it provides the possibility of doing this in almost any species," said Chen. "It’s a combination of genomic and biologic techniques."

"Finding specific targets of a transcription factor is the Holy Grail for many biologists," said Dr. Graeme Mardon, senior co-author and a professor in the Program in Developmental Biology at BCM. In this case, he said, the researchers have shown that the genes they found are, in fact, targets of the Eyeless protein.

"We are now in the process of knocking out hundreds of genes predicted to be targets of this retinal network," said Mardon. "This has opened the door to determining what are the critical targets of this gene for eye development. Others can use similar methods to do the same thing."

Eventually, he said, the technique could be used to identify genes that are involved in similar processes that go wrong, leading to diseases. This will identify the areas where things go wrong so that researchers can target proposed therapies and drugs in the future.

In their area, the technique speeds the process of identifying those genes that are really important in identifying the genes critical to development of the eye.

"It also gives you a global picture of what the transcription factor does," said Chen. "This is also a molecular screen" that will be valuable in studying mammals.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>