Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Looking’ at Eyeless from two directions

09.03.2006


When Dr. Rui Chen, assistant professor in the Baylor College of Medicine Human Genome Sequencing Center, sought to understand further the protein called Eyeless, he faced a dilemma.



Eyeless is a transcription factor, which means one of its major activities is to turn off or turn on other genes that have an effect on eye development later in the process. It is so powerful that when it is inserted into almost any tissues of the fruit fly, eyes grow – often in unexpected places.

Because Eyeless is a critical factor in the development of eyes in fruit flies or Drosophila, (a common model organism for studying how different organs grow), understanding the genes it affects could offer key clues into how the organs for sight actually develop in fruit flies and ultimately people.


One method for locating these genes is called a microarray, a tiny DNA chip used to identify specific sequences of genetic material. A microarray can provide hundreds of candidate genes – too many to be useful. Another method is to use bioinformatics and computers to predict where transcription factors bind, but this can give thousands of candidate genes. Again, that’s too much information to be valuable.

Chen, however, took a different tack. He used both methods. Then he dealt with only the genes and binding sequences that were found by both. Of the 300 genes found by microarray and 10,000 or more by the binding site technique, only 21 were found by both.

Because 11 of these were known to play a key role in eye development, he knew he was on the right track. A report of his work appears online today in the journal Genome Research.

"The reason I like this project is that it provides the possibility of doing this in almost any species," said Chen. "It’s a combination of genomic and biologic techniques."

"Finding specific targets of a transcription factor is the Holy Grail for many biologists," said Dr. Graeme Mardon, senior co-author and a professor in the Program in Developmental Biology at BCM. In this case, he said, the researchers have shown that the genes they found are, in fact, targets of the Eyeless protein.

"We are now in the process of knocking out hundreds of genes predicted to be targets of this retinal network," said Mardon. "This has opened the door to determining what are the critical targets of this gene for eye development. Others can use similar methods to do the same thing."

Eventually, he said, the technique could be used to identify genes that are involved in similar processes that go wrong, leading to diseases. This will identify the areas where things go wrong so that researchers can target proposed therapies and drugs in the future.

In their area, the technique speeds the process of identifying those genes that are really important in identifying the genes critical to development of the eye.

"It also gives you a global picture of what the transcription factor does," said Chen. "This is also a molecular screen" that will be valuable in studying mammals.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>