Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmine detection helping to fight breast cancer

09.03.2006


Scientists researching ways to detect landmines have discovered a radical new way to screen for breast cancer using microwave radar technology that could save thousands of lives.



Bristol-based Micrima Ltd, a spin-out from Bristol University, has received a £150,000 investment from NESTA (the National Endowment for Science, Technology and the Arts) to help the company develop this innovative technology. This is part of a funding round worth £475,000 with co-investment from private investors and Sulis, the University Challenge Fund managed by Quester.

Breast cancer is the most common cause of death in women between the ages of 35 and 55 in Europe. With approximately 500,000 deaths each year and 1.4 million new cases, one in eight women will contract the disease during their lifetime. One of the biggest challenges currently facing the medical profession is the early detection and accurate diagnosis of this disease which gives the best chances of recovery.


Each year 1.5 million women are screened for breast cancer in the UK. At present, breast cancer screening is carried out mainly by X-ray mammography which is more suitable for women over 50 when breast tissue is less fibrous. The new method needs no breast compression and the ‘radiation’ used is non-ionising unlike x-rays, which because of potential health effects, has to be used sparingly, and avoided where possible in younger women. In contrast, the radar method may be very suitable for younger women, and has absolutely no health detriment.

No single method is perfect but Micrima’s microwave radar technology has the potential to revolutionise breast screening as it can offer a quick method of imaging which may help avoid unnecessary and expensive biopsies.

The company’s innovative technology was originally developed for detecting buried landmines. Mine detection and breast screening share similar characteristics in that they both involve the discovery of a discrete object whose electrical properties are different from the surrounding medium. At microwave frequencies, tumours contrast well with normal breast tissue.

The investment round will fund the acquisition of first clinical data and further commercial and technical development. As part of the round, Roy Johnson will join Micrima as Executive Chairman. Roy is an experienced medical device and diagnostics executive, with over 25 years experience at senior and board level in both private and public international companies.

Mark White , NESTA Invention and Innovation Director, said: “This ground-breaking technology from Micrima is a great example of the kind of world-class technology in the UK our early stage seed funding is designed to support. Through investing in its innovative technology early on we are looking to ensure that this idea has every opportunity of being fully commercialised, benefiting so many thousands of women, those working in healthcare, and the UK economy."

Chief executive, Roy Johnson, added: “The half-million pound funding from NESTA and the SULIS seedcorn fund is a major step towards making this new screening programme available to all women.”

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>