Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmine detection helping to fight breast cancer

09.03.2006


Scientists researching ways to detect landmines have discovered a radical new way to screen for breast cancer using microwave radar technology that could save thousands of lives.



Bristol-based Micrima Ltd, a spin-out from Bristol University, has received a £150,000 investment from NESTA (the National Endowment for Science, Technology and the Arts) to help the company develop this innovative technology. This is part of a funding round worth £475,000 with co-investment from private investors and Sulis, the University Challenge Fund managed by Quester.

Breast cancer is the most common cause of death in women between the ages of 35 and 55 in Europe. With approximately 500,000 deaths each year and 1.4 million new cases, one in eight women will contract the disease during their lifetime. One of the biggest challenges currently facing the medical profession is the early detection and accurate diagnosis of this disease which gives the best chances of recovery.


Each year 1.5 million women are screened for breast cancer in the UK. At present, breast cancer screening is carried out mainly by X-ray mammography which is more suitable for women over 50 when breast tissue is less fibrous. The new method needs no breast compression and the ‘radiation’ used is non-ionising unlike x-rays, which because of potential health effects, has to be used sparingly, and avoided where possible in younger women. In contrast, the radar method may be very suitable for younger women, and has absolutely no health detriment.

No single method is perfect but Micrima’s microwave radar technology has the potential to revolutionise breast screening as it can offer a quick method of imaging which may help avoid unnecessary and expensive biopsies.

The company’s innovative technology was originally developed for detecting buried landmines. Mine detection and breast screening share similar characteristics in that they both involve the discovery of a discrete object whose electrical properties are different from the surrounding medium. At microwave frequencies, tumours contrast well with normal breast tissue.

The investment round will fund the acquisition of first clinical data and further commercial and technical development. As part of the round, Roy Johnson will join Micrima as Executive Chairman. Roy is an experienced medical device and diagnostics executive, with over 25 years experience at senior and board level in both private and public international companies.

Mark White , NESTA Invention and Innovation Director, said: “This ground-breaking technology from Micrima is a great example of the kind of world-class technology in the UK our early stage seed funding is designed to support. Through investing in its innovative technology early on we are looking to ensure that this idea has every opportunity of being fully commercialised, benefiting so many thousands of women, those working in healthcare, and the UK economy."

Chief executive, Roy Johnson, added: “The half-million pound funding from NESTA and the SULIS seedcorn fund is a major step towards making this new screening programme available to all women.”

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>