Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targeted treatment for brain tumors shows promise in pre-clinical models

16.02.2006


Monoclonal antibody targets key tumor growth factor; Successfully causes brain tumor regression and improves animal survival



Gliomas are the most common primary brain tumors, and also one of the most complicated cancers to treat. Currently, treatment options such as surgery, radiation and chemotherapy are only marginally beneficial and present significant risks for patients, including loss of physical and cognitive abilities. But, a new study published today in Clinical Cancer Research found that treatment with a novel monoclonal antibody (mAb) L2G7 inhibited the growth of glioma cells, induced glioma regression within the brain and prolonged survival – a finding that could be translated into human trials as early as next year.

"There is a tremendous need for advancement in the treatment of malignant brain tumors, which are the number one cancer killer of children under age 20 and a devastating diagnosis for adults as well," said Dr. John Laterra, M.D., Ph.D., research scientist at the Kennedy Krieger Institute and senior author of the study. "The results of this study bring us closer to developing an alternative treatment option for both adults and for pediatric patients, who are hardest hit by conventional therapies."


A team of researchers, led by Dr. Jin Kim of Galaxy Biotech, LLC in Mountain View, CA and Dr. John Laterra of the Kennedy Krieger Institute in Baltimore, MD, designed the study to evaluate the effectiveness of L2G7 in treating human gliomas implanted in mouse models. Results indicate that treatment with L2G7 completely inhibited the growth of the tumors when established under the skin of animals, while control mAb had only a minimal effect. Even more promising results were observed in mice with tumors implanted within the brain. In this setting, L2G7 not only induced tumor regression, but dramatically increased survival. Animals treated with the control all died within 41 days of starting the experiment. All mice treated with L2G7 survived through day 70, and 80% of the animals were alive at day 90, six weeks after stopping the L2G7 treatment.

L2G7 was developed by Dr. Kim’s team to inhibit the activities of hepatocyte growth factor (HGF). HGF is known to be a promising target for cancer therapy by virtue of its multiple actions that promote cancer malignancy. HGF stimulates tumor cell division, tumor angiogenesis (blood vessel formation) and tumor cell resistance to toxic agents such as chemotherapy and radiation. In this study, brain tumor cells were injected both under the skin and within the brain to specifically evaluate anti-tumor responses within the central nervous system. The central nervous system is a location often protected from cancer therapies by the "blood-brain barrier," which could possibly limit the effects of mAb therapy on tumors situated within the brain. Treatment with L2G7 or a control mAb was given to both subsets of mice twice weekly.

In one experiment, the researchers delayed treatment of a subset of mice for 18 days to determine the effect of L2G7 on larger, more advanced tumors within the brain. At that time, the average tumor size was 26.7 mm3, but following only three doses of L2G7, tumors shrank to 11.7 mm3. Conversely, tumors treated with the control mAb grew 5-fold to 134.3 mm3 during the same period, with a mean volume 12 times larger than the L2G7-treated tumors.

"Monoclonal antibodies to growth factors or their receptors are playing an increasingly important role in cancer therapy," said Dr. Cary Queen, President of Galaxy Biotech. "Because of its specificity for HGF, L2G7 may prove to be particularly effective at halting tumor growth while minimizing side effects and harm to the surrounding healthy brain cells."

"Our company is committed to the clinical development of L2G7, and we hope to extend the current success of targeted antibody therapies in the treatment of breast, colon and lung cancer patients to the treatment of serious central nervous system malignancies such as gliomas."

In a related study (Lal et al., Clin Cancer Res. 11:4479-4486, 2005), Dr. Laterra’s research team showed that targeting brain tumor HGF with gene therapy can substantially enhance the anti-tumor effects of radiation therapy, again emphasizing the important role HGF plays in brain tumors.

Emily Butler | EurekAlert!
Further information:
http://www.kennedykrieger.org/
http://www.spectrumscience.com

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>