Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mmm, sounds tasty!

08.02.2006


In a unique double discovery, researchers at the University of Leeds have shown that massive bursts of ultrasound are generated during the first second of biting into crunchy food – and are simultaneously analysed by the ears and mouth.



Food physicist Professor Malcolm Povey explains: “Food is, in effect, talking to us and we innately understand what it’s saying about texture by interpreting the sensations through our ears and mouths. Our research shows that the sound and feel of food in the mouth is as important as taste, look and smell in deciding whether we like something or not.”

Using a microphone, an acoustic microscope, some simple software and an enviable supply of different biscuits, Professor Povey realised that the energy produced by the very first crack of a biscuit breaking is released as distinct pulses of ultrasound – sound waves beyond the range of human hearing.


Slowed down and plotted onto a graph, the pulses can be seen as a series of tall peaks, but actually last only for milliseconds and are generated at frequency levels more usually associated with bats, whales and dolphins for echolocation.

“It’s a good job we can’t hear all the energy in these pulses,” says Povey, “as they would damage our ears if we did. They’re enormously loud bangs – often way beyond safe decibel levels.”

The discovery of recordable ultrasound pulses is expected to be of great interest to the food manufacturers, who in the pursuit of the perfect crispy/crunchy texture for their products, employ an army of trained tasting panels. These people form the crux of manufacturers’ efforts at product consistency and quality control in terms of creating the optimum texture for a product.

The technique of recording the sound of biting or breaking crispy food and simply counting the peaks of soundwaves provides a cheap, quantifiable and accurate analysis of texture, that will ensure absolute product consistency: “The more peaks, the crispier it is – it’s as simple as that,” says Povey.

The research also demonstrates that the human mouth is extremely accurate in its innate analysis of these ultrasound pulses. Test results show a very high correlation to the machine-measured results by both professional tasters working in the food industry and untrained volunteers. “We had no idea that the human ears and mouth were so adept at capturing and analysing this information, especially in the space of milliseconds; it’s incredible,” he says.

“We’re not trying to replace tasting panels,” he insists, “in fact we need them to calibrate the instruments. But a machine-measured test is a quick and simple way to check consistency of products once the desired texture for a product has been decided. However, the research does suggest that the training of food tasters in respect of measuring crispness is probably unnecessary.”

Povey is convinced that the same ultrasound measuring techniques could potentially be applied to other textures in food manufacturing as well as having major applications outside the food industry.

“Essentially our methods measure what happens when a material fails,” explains Povey. “So this technique could easily be transferred to industry to detect failures in materials used in engineering or the aerospace industry, for instance.

“Materials testing usually requires expensive equipment, but we’ve proved that recording, measuring and comparing sound pulses is rigorous and accurate. In the same way engineers used to tap wheels on railway engines to listen for faults, we can use these microphones to record a much wider frequency range to pick up tiny defects. Its potential is enormous.”

Hannah Love | alfa
Further information:
http://www.leeds.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>