Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hepatitis C recurs rapidly after liver transplant

03.02.2006


Extrahepatic sites may account for some viral replication



When a diseased liver is removed from a patient with Hepatitis C (HCV), serum viral levels plummet. However, after receiving a healthy liver transplant, virus levels rebound and can surpass pre-transplant levels within a few days, according to a new study published in the February 2006 issue of Liver Transplantation, the official journal of the American Association for the Study of Liver Diseases (AASLD) and the International Liver Transplantation Society (ILTS). The journal is published on behalf of the societies by John Wiley & Sons, Inc. and is available online via Wiley InterScience.

Hepatitis C is the number one reason for liver transplantation, however, the virus always recurs in the new liver. Since mathematical models have been useful in the study of the viral dynamics of HIV and hepatitis B, researchers, led by Kimberly A. Powers and Ruy M. Ribeiro of the Los Alamos National Laboratory in New Mexico, sought to use a mathematical model to quantify the liver reinfection dynamics of HCV.


The researchers, in collaboration with a surgical team lead by John McHutchison now at Duke University Medical Center, followed six HCV-infected patients who received cadaveric liver transplants. They collected blood samples before, during and after transplantation to assess changing levels of HCV RNA which was measured using reverse transcription polymerase chain reaction assay. They then plugged the data into a mathematical model, correcting for fluid balance, and analyzed the results using linear regression.

"In most patients," the authors report, "HCV RNA levels decreased rapidly during and after transplantation and subsequently began to increase – reaching above pre-transplant levels in all but one patient – within a few days of the procedure." They found that when the diseased liver was removed, virus levels dropped with an average half-life of 48 minutes. After the new liver was implanted, they found that virus levels continued to drop for up to 23 hours, then began to rise, doubling every 2 days.

Notably, in three patients, the virus levels plateaued before rising, suggesting, say the authors "that a non-hepatic source supplied virions and balanced their intrinsic clearance." The authors estimate, however, that non-hepatic sources can only account for 4 percent of total viral production. Ninety-six percent of it occurs in the liver.

The patterns of viremia decline and increase seen in this study are consistent with previous studies, although this study indicates a much faster virion half-life than previously suggested. The findings also support the notion that HCV can replicate rapidly in the post-transplant immunosuppressed patient, leading the authors to suggest that early antiviral therapy may delay or prevent reinfection.

The study was limited by the small number of patients and the single compartment model, which did not separately account for liver and extrahepatic sites of viral replication. "Nevertheless," report the authors, "the rapid HCV RNA decline in the anhepatic phase, followed by the postoperative increase observed in several patients…suggest that the liver is the primary site of viral replication, with at most small contributions from extrahepatic sites."

In conclusion, the authors write, "Continued work towards elucidating extrahepatic replication, the time-course of reinfection, the effects of immunosuppressive therapy, and the relationships among viremia, infection and liver damage will be beneficial in optimizing treatment for HCV patients undergoing liver transplantation."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/livertransplantation

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>