Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness unveils vital metabolic fuel switch between sugar and fat

19.01.2006


Mediating molecule provides new research target for diabetes, obesity



Constant darkness throws a molecular switch in mammals that shifts the body’s fuel consumption from glucose to fat and induces a state of torpor in mice, a research team led by scientists at The University of Texas Medical School at Houston reports in the Jan. 19 edition of Nature.

While their findings could provide new insight into mammalian hibernation, researchers note that the pivotal metabolic signal that emerged from the dark also presents a new target for obesity and type 2 diabetes research. A series of experiments pinpointed 5-prime adenosine monophosphate (5’-AMP) as the key molecular mediator of the constant darkness effect, switching mice from a glucose-burning, fat-storing state to a fat-burning, glucose-conserving lethargy.


Active mammals – a bear foraging for food or a human running a marathon – also undergo a similar switch, burning glucose first to fuel their efforts, and as blood sugar is consumed, their bodies switch to burning fat.

"How does the body know when to switch? 5’-AMP is the signal. I believe it’s the same metabolic system, whether we are talking about hibernation or not," said senior author Cheng Chi Lee, Ph.D., professor of biochemistry.

The team started with a basic question: What actually sets off hibernation? "These animals dig deep burrows," said Lee, an expert in circadian rhythms. "They are constantly in the dark. Why not darkness as a switch?"

Mice do not hibernate but they can slip into a similar short-term state of torpor. Lee and colleagues started with a microarray analysis of gene expression in the livers of mice subject to the usual light-dark cycle and those kept in the dark for 48 hours.

One gene fired up in the dark – procolipase, which produces an enzyme (CLPS) required for degrading dietary fat. Expression of the gene previously was thought to be restricted to the pancreas and gastrointestinal tract. Yet messenger RNA for CLPS (mClps) was found in the livers of mice exposed to prolonged dark, an unexpected finding.

They repeated the experiment in mice with natural, or "wild type," genomes and three strains of mutant mice with impaired circadian rhythms.

The wild-type mice and two of the mutant strains exposed to regular light-dark cycles showed no sign of the gene’s expression in their livers – it remained in the pancreas and stomach. The gene was expressed in the livers of some mice from a double-mutant strain that has absolutely no circadian response. All four genotypes of mouse kept in constant darkness had mClps expressed not only in their livers but in all peripheral tissue except the brain and kidneys.

"This is the first example of a gene that is turned on by darkness, where darkness itself is a signal," Lee said. "Twelve hours of darkness didn’t do the job; it had to be at least 48 hours."

Tests showed it subsequently took five to seven hours of light exposure to inhibit the gene’s expression in the liver. Taken together, these time delays pointed to the gene’s expression being mediated by something in the blood. Another lab test showed elevated levels of 5’-AMP in the blood of mice exposed to constant darkness compared to those kept in the regular light-dark cycle.

To confirm the connection, the team injected 5’-AMP into mice exposed to a regular light-dark cycle. Three to four hours after injection, mClps was expressed in the livers of these mice and further tests showed expression in all tissues except the brain.

Injecting mice with 5’-AMP’s more glamorous molecular cousins – adenosine triphosphate (ATP), adenosine diphosphate (ADP), both vital to providing energy to cells, and the signaling molecule cyclic AMP -- did not produce the same effect.

The mice injected with 5’-AMP also were found to have a lower body temperature, a sign of torpor. Core body temperature measurements confirmed their lethargic state. Mice kept in constant dark also ate less, lost weight, and showed evidence of increased fat consumption, all hallmarks of hibernation in larger mammals.

The authors note that 5’-AMP has previously been shown to regulate enzyme activity for glucose usage and production. The brain requires glucose to function. By switching the primary source of energy in other organs from glucose to fat, 5’-AMP conserves glucose for brain function, the paper notes.

"5’-AMP is a pivotal metabolic signal whose circulatory level determines the balance of the peripheral organ energy supply between glucose, glycogen and fat," the authors conclude, raising the longer-term possibility of 5’-AMP-based therapies for obesity or type 2 diabetes.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>