Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness unveils vital metabolic fuel switch between sugar and fat

19.01.2006


Mediating molecule provides new research target for diabetes, obesity



Constant darkness throws a molecular switch in mammals that shifts the body’s fuel consumption from glucose to fat and induces a state of torpor in mice, a research team led by scientists at The University of Texas Medical School at Houston reports in the Jan. 19 edition of Nature.

While their findings could provide new insight into mammalian hibernation, researchers note that the pivotal metabolic signal that emerged from the dark also presents a new target for obesity and type 2 diabetes research. A series of experiments pinpointed 5-prime adenosine monophosphate (5’-AMP) as the key molecular mediator of the constant darkness effect, switching mice from a glucose-burning, fat-storing state to a fat-burning, glucose-conserving lethargy.


Active mammals – a bear foraging for food or a human running a marathon – also undergo a similar switch, burning glucose first to fuel their efforts, and as blood sugar is consumed, their bodies switch to burning fat.

"How does the body know when to switch? 5’-AMP is the signal. I believe it’s the same metabolic system, whether we are talking about hibernation or not," said senior author Cheng Chi Lee, Ph.D., professor of biochemistry.

The team started with a basic question: What actually sets off hibernation? "These animals dig deep burrows," said Lee, an expert in circadian rhythms. "They are constantly in the dark. Why not darkness as a switch?"

Mice do not hibernate but they can slip into a similar short-term state of torpor. Lee and colleagues started with a microarray analysis of gene expression in the livers of mice subject to the usual light-dark cycle and those kept in the dark for 48 hours.

One gene fired up in the dark – procolipase, which produces an enzyme (CLPS) required for degrading dietary fat. Expression of the gene previously was thought to be restricted to the pancreas and gastrointestinal tract. Yet messenger RNA for CLPS (mClps) was found in the livers of mice exposed to prolonged dark, an unexpected finding.

They repeated the experiment in mice with natural, or "wild type," genomes and three strains of mutant mice with impaired circadian rhythms.

The wild-type mice and two of the mutant strains exposed to regular light-dark cycles showed no sign of the gene’s expression in their livers – it remained in the pancreas and stomach. The gene was expressed in the livers of some mice from a double-mutant strain that has absolutely no circadian response. All four genotypes of mouse kept in constant darkness had mClps expressed not only in their livers but in all peripheral tissue except the brain and kidneys.

"This is the first example of a gene that is turned on by darkness, where darkness itself is a signal," Lee said. "Twelve hours of darkness didn’t do the job; it had to be at least 48 hours."

Tests showed it subsequently took five to seven hours of light exposure to inhibit the gene’s expression in the liver. Taken together, these time delays pointed to the gene’s expression being mediated by something in the blood. Another lab test showed elevated levels of 5’-AMP in the blood of mice exposed to constant darkness compared to those kept in the regular light-dark cycle.

To confirm the connection, the team injected 5’-AMP into mice exposed to a regular light-dark cycle. Three to four hours after injection, mClps was expressed in the livers of these mice and further tests showed expression in all tissues except the brain.

Injecting mice with 5’-AMP’s more glamorous molecular cousins – adenosine triphosphate (ATP), adenosine diphosphate (ADP), both vital to providing energy to cells, and the signaling molecule cyclic AMP -- did not produce the same effect.

The mice injected with 5’-AMP also were found to have a lower body temperature, a sign of torpor. Core body temperature measurements confirmed their lethargic state. Mice kept in constant dark also ate less, lost weight, and showed evidence of increased fat consumption, all hallmarks of hibernation in larger mammals.

The authors note that 5’-AMP has previously been shown to regulate enzyme activity for glucose usage and production. The brain requires glucose to function. By switching the primary source of energy in other organs from glucose to fat, 5’-AMP conserves glucose for brain function, the paper notes.

"5’-AMP is a pivotal metabolic signal whose circulatory level determines the balance of the peripheral organ energy supply between glucose, glycogen and fat," the authors conclude, raising the longer-term possibility of 5’-AMP-based therapies for obesity or type 2 diabetes.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>