Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiotherapy advance points way to noninvasive brain cancer treatment

03.01.2006


With an equal rate of incidence and mortality-the number of those who get it, and the number of those who die from it-Glioblastoma Multiforme (GBM) is a brain cancer death sentence.



Of the approximately 12,000 people who are diagnosed with GBM annually in the U.S., half will die within a year, and the rest within 3 years. Currently, the only treatments that stretch survival limits are exceptionally invasive surgeries to remove the tumor and radiation treatment with the maximum tolerated dose - all of which leads to a painfully low quality of life. Because of this, researchers are racing to find better therapies to stop or slow GBM.

In the Jan. 1, 2006 issue of the journal Clinical Cancer Research, Gelsomina "Pupa" De Stasio, professor of physics at the University of Wisconsin-Madison, and her colleagues report on research into using a new radiotherapy technique for fighting GBM with the element gadolinium. The approach might some day lead to less invasive treatment and possibly a cure of this disease.


"It’s the most lethal cancer there is. The only good thing about it is that, if left untreated, death is relatively quick and pain-free, since this tumor does not form painful metastases in other parts of the body," says De Stasio. The therapy, called Gadolinium Synchrotron Stereotactic Radiotherapy (GdSSR), requires a gadolinium compound to find tumor cells and penetrate them, down into their nuclei, while sparing the normal brain. Then, the patient’s head is irradiated with x-rays. For these x-ray photons the whole brain is transparent, while gadolinium is opaque. Then, where gadolinium is localized-in the nuclei of the cancer cells only-what’s known as "the photoelectric effect" takes place.

"Exactly 100 years after Einstein first explained this effect, we have found a way to make it useful in medicine," De Stasio says. "In this effect, atoms absorb photons and emit electrons. The emitted electrons are very destructive for DNA, but have a very short range of action. Therefore, to induce DNA damage that the cancer cells cannot repair, and consequently cell death, gadolinium atoms must be localized in the nuclei of cancer cells."

De Stasio adds that, for the treatment to be effective, gadolinium must be absent from normal cells and be present in the majority of the cancer cell nuclei. The first condition is well demonstrated by MRI, while the second was recently demonstrated using microscopy techniques at the Synchrotron Radiation Center (SRC) in Stoughton.

De Stasio, the first to introduce this technique into the biological and medical fields, is working to develop the therapy to treat GBM. In the current article, she and her colleagues prove that gadolinium reaches more than 90 percent of the cancer cell nuclei, using four different kinds of human glioblastoma cells in culture.

De Stasio developed and oversees the X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) program at UW Madison’s SRC, where she also serves as interim scientific director.

The technology necessary for eventual treatment would involve miniature synchrotron light sources, which could be similar in size and cost to an MRI machine. De Stasio says the next steps will include animal and possibly human clinical trials.

"If we do see that we can cure animals from their cancers, then it’s worth investigating the molecular biology of this drug and seeing what the uptake mechanism is," she says. "But first, you want to know that it works and that it really has potential for saving lives."

Because of the deadly nature of GBM, De Stasio says an alternative is desperately needed to current therapies that offer little promise for extending life. De Stasio says it will be a year before it is known whether the treatment works in animal models, and likely another five to ten years before clinical trials and available treatments would emerge.

While the human health payoff seems far away, De Stasio says she is committed to the timetable needed for success. "(Fighting cancer) is the type of work that makes you feel good about being a scientist," she says. "If you can really contribute to humanity and do something that’s useful for people, for sick people, it’s really incredibly gratifying."

John Morgan, (608) 877-2357, jmorgan@wisc.edu

Gelsomina De Stasio | EurekAlert!
Further information:
http://www.src.wisc.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>