Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how air pollution can cause heart disease

21.12.2005


New York University School of Medicine researchers provide some of the most compelling evidence yet that long-term exposure to air pollution--even at levels within federal standards--causes heart disease. Previous studies have linked air pollution to cardiovascular disease but until now it was poorly understood how pollution damaged the body’s blood vessels.



In a well-designed mouse study, where animals breathed air as polluted as the air in New York City, the researchers pinpointed specific mechanisms and showed that air pollution can be particularly damaging when coupled with a high-fat diet, according to new research published in the December 21 issue of JAMA.

"We established a causal link between air pollution and atherosclerosis," says Lung Chi Chen, Ph.D., Associate Professor of Environmental Medicine at NYU School of Medicine and a lead author of the study. Atherosclerosis--the hardening, narrowing, and clogging of the arteries--is an important component of cardiovascular disease.


The study, done in collaboration with the Mount Sinai School of Medicine and University of Michigan, looked at the effects of airborne particles measuring less than 2.5 microns, referred to as PM2.5, the size linked most strongly with cardiovascular disease. The emissions arise primarily from power plants and vehicle exhaust. The US Environmental Protection Agency (EPA) has regulated PM2.5 since 1997, limiting each person’s average exposure per year to no more than 15 micrograms per cubic meter. These tiny particles of dust, soot, and smoke lead to an estimated 60,000 premature deaths every year in the United States.

Dr. Chen and his colleagues divided 28 mice, which were genetically prone to developing cardiovascular disease, into two groups eating either normal or high-fat diets. For the next six months, half of the mice in each feeding group breathed doses of either particle-free filtered air or concentrated air containing PM2.5 at levels that averaged out to 15.2 micrograms per cubic meter. This amount is within the range of annual EPA limits and equivalent to air quality in urban areas such as New York City.

The researchers then conducted an array of tests to measure whether the PM2.5 exposure had any impact on the mice’s cardiovascular health. Overall, mice who breathed polluted air fared worse than those inhaling filtered air. But when coupled with a high-fat diet, the impact of PM2.5 exposure was even more dramatic. The results added up to a clear cause and effect relationship between PM2.5 exposure and atherosclerosis, according to the study.

On the whole, mice breathing polluted air had far more plaque than those breathing filtered air. In cross sections taken from the largest artery in the body--the aorta--mice on normal diets and exposed to PM2.5 had arteries 19.2 percent filled with plaque, the fatty deposits that clog arteries. The arteries of those breathing particle-free air were 13.2 percent obstructed. Among high-fat diet mice, those exposed to PM2.5 had arteries that were 41.5 percent obstructed by plaque, whereas the arteries of the pollution-free mice were 26.2 percent clogged. In both normal and high-fat diet mice, PM2.5 exposure increased cholesterol levels, which are thought to exacerbate plaque buildup.

Though findings for increased plaque among mice eating normal diets were not statistically significant, Dr. Chen believes that future research on larger numbers of animals will solidify the trend. "Even with the low-fat diet, there’s still something there. So that is something to think about," he says. He suspects that PM2.5 exposure could also greatly affect even people who do not eat high-fat diets.

Mice exposed to PM2.5 also appeared prone to developing high blood pressure, another element of cardiovascular disease, because their arteries had become less elastic. To measure tension in the arteries, the researchers tested how the neurotransmitters serotonin and acetylcholine affected the aortic arches of PM2.5-exposed mice differently than those of controls. The arteries taken from exposed mice were less elastic than the control group, constricting more in the presence of serotonin and relaxing less in response to acetylcholine. Once again, the mice fed high-fat diets suffered the most pronounced effects from breathing polluted air.

Finally, the researchers also examined various measures of vascular inflammation, which is involved in atherosclerosis on a number of levels. In the aortas of PM2.5–exposed mice, for example, they found increased levels of macrophages, immune cells that are an important ingredient in plaque deposits and also active participants in a biochemical pathway related to inflammation. The study revealed several signs that this pathway was more active, strengthening the connection between airborne particles and cardiovascular disease.

Jennifer Choi | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>