Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover potential mechanism for tumor growth

19.12.2005


Researchers at Columbia University Medical Center have identified an inherent feature of stem and progenitor cells that may promote initiation and progression of cancerous tumors.



In a study published in the December issue of Cancer Cell, the team showed that stem and progenitor cells are susceptible to a specific error during cell division that can result in severe chromosomal defects. This susceptibility may explain how a tumor-initiating cell, also known as a cancer stem cell, arises from a normal cell. It may also explain how a cancer stem cell acquires additional mutations that increase tumor malignancy.

According to Timothy Bestor, Ph.D., and Marc Damelin, Ph.D., of Columbia University College of Physicians and Surgeons, understanding the nature of cancer stem cells could result in new therapies that specifically target those cells, which are thought to be the driving force of tumor progression.


The process of cell division is closely monitored by the cell, because a mistake can result in a cancer-causing chromosome abnormalities. Typically during cell division, cells monitor quality control with a series of checkpoints. One such checkpoint confirms that the cell’s chromosomes have been disentangled before they are to be pulled apart in mitosis, to ensure that the chromosomes will be separated appropriately.

The Columbia researchers found, however, that stem and progenitor cells are deficient in this checkpoint and will divide even if the chromosomes are entangled. All three cell types tested by the researchers - mouse embryonic stem cells, mouse neural progenitor cells, and human bone marrow progenitor cells - attempted cell division with entangled chromosomes. The researchers think it likely that cancer stem cells, which closely resemble normal stem cells, have the same deficiency.

"The failure to untangle before dividing undoubtedly will lead to chromosomal defects," said Dr. Bestor, professor of genetics and development and the study’s principal investigator. "Surviving cells may end up with too many chromosomes, they may lose chromosomes, or some chromosomes may get rearranged." These same types of chromosomal defects are the hallmark of cancer cells, and there are chromosomal abnormalities in all types of cancer.

"We may have found how a stem cell without any pre-existing mutation can become a cancer stem cell," said Dr. Damelin, a CUMC postdoctoral fellow of the Damon Runyon Cancer Research Foundation and the lead author on the study.

The research also points to potential obstacles involved with stem cell therapies. In the lab, stem cells are pushed to divide many times more than they normally would divide in an organism. The more stem cells divide, the more likely they are to acquire abnormal chromosome constitutions. Further research will be necessary to understand and address these risks.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>