Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover potential mechanism for tumor growth

19.12.2005


Researchers at Columbia University Medical Center have identified an inherent feature of stem and progenitor cells that may promote initiation and progression of cancerous tumors.



In a study published in the December issue of Cancer Cell, the team showed that stem and progenitor cells are susceptible to a specific error during cell division that can result in severe chromosomal defects. This susceptibility may explain how a tumor-initiating cell, also known as a cancer stem cell, arises from a normal cell. It may also explain how a cancer stem cell acquires additional mutations that increase tumor malignancy.

According to Timothy Bestor, Ph.D., and Marc Damelin, Ph.D., of Columbia University College of Physicians and Surgeons, understanding the nature of cancer stem cells could result in new therapies that specifically target those cells, which are thought to be the driving force of tumor progression.


The process of cell division is closely monitored by the cell, because a mistake can result in a cancer-causing chromosome abnormalities. Typically during cell division, cells monitor quality control with a series of checkpoints. One such checkpoint confirms that the cell’s chromosomes have been disentangled before they are to be pulled apart in mitosis, to ensure that the chromosomes will be separated appropriately.

The Columbia researchers found, however, that stem and progenitor cells are deficient in this checkpoint and will divide even if the chromosomes are entangled. All three cell types tested by the researchers - mouse embryonic stem cells, mouse neural progenitor cells, and human bone marrow progenitor cells - attempted cell division with entangled chromosomes. The researchers think it likely that cancer stem cells, which closely resemble normal stem cells, have the same deficiency.

"The failure to untangle before dividing undoubtedly will lead to chromosomal defects," said Dr. Bestor, professor of genetics and development and the study’s principal investigator. "Surviving cells may end up with too many chromosomes, they may lose chromosomes, or some chromosomes may get rearranged." These same types of chromosomal defects are the hallmark of cancer cells, and there are chromosomal abnormalities in all types of cancer.

"We may have found how a stem cell without any pre-existing mutation can become a cancer stem cell," said Dr. Damelin, a CUMC postdoctoral fellow of the Damon Runyon Cancer Research Foundation and the lead author on the study.

The research also points to potential obstacles involved with stem cell therapies. In the lab, stem cells are pushed to divide many times more than they normally would divide in an organism. The more stem cells divide, the more likely they are to acquire abnormal chromosome constitutions. Further research will be necessary to understand and address these risks.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>