Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grids to aid breast cancer diagnosis and research

08.12.2005


The millions of mammography exams performed each year in Europe save thousands of women’s lives, but if the data from all breast cancer screening procedures was made available to clinicians and researchers across the continent they could save many more. That is the vision behind MammoGrid.



The MammoGrid project is studying the commercial possibilities for its distributed computing environment that employs existing Grid technologies for the creation of a European database of mammogram data. By using Grid computing, the system allows hospitals, healthcare workers and researchers to share data and resources. It supports effective co-working, such as obtaining second opinions that reduce the risk of misdiagnosis, and opens the door to powerful statistical analysis of the incidence and forms of breast cancer to assist future research.

“Breast cancer is one of many diseases that is complicated to diagnose and for which Grid computing will prove to be a very valuable tool,” says Jean-Marie Le Goff, head of the Technology Transfer Service at CERN.


Breast cancer screening procedures suffer from several complications including the physical differences between the breasts of different women, the different procedures and equipment used to obtain mammography images, and the large amount of image data produced that makes computer-aided diagnosis (CAD) processing intensive.

These problems have contributed to the relatively high error rate of breast cancer screening procedures. It is estimated that around 30 per cent of mammograms result in either false positive diagnoses, whereby women are falsely diagnosed with breast cancer leading to unnecessary and painful biopsy, or, more seriously, in false negative diagnoses that lead to tumours going undetected.

With one in eight women developing breast cancer at some point in their lives and one in 28 dying from it, the importance of improving screening procedures and ensuring accurate diagnosis is evident.

By giving healthcare professionals the ability to use Grid computing to efficiently share data and resources their ability to accurately diagnose breast cancer is greatly enhanced. “A doctor in a small village, for example, probably doesn’t have access to powerful tools but with Grid computing he can provide the patient with an analysis from a hospital online. Also if cancer is detected the doctor would be able to monitor data from mammography exams taken over the course of months to determine the patient’s response to treatment,” notes Le Goff.

The interconnectivity the system provides between different hospitals and medical centres makes obtaining a second opinion simpler and faster, opening the door to tele-diagnosis and the creation of communities of medical ‘virtual organisations’ able to co-work using the shared resources of the Grid. Analysis of mammograms can be carried out in different locations using CAD tools, for example.

The resource-boosting properties of Grid computing are particularly important for creating a European distributed mammography database that would give healthcare professionals access to millions of mammography images to assist diagnosis and research.

Such a database would not only improve diagnosis through enhancing comparative analysis with other breast cancer cases, but would provide important statistical information about the epidemiology of the disease.

The project developed a proof-of-concept demonstrator to test their Grid architecture that so far allows access to 30,000 mammogram images. Grid boxes were set up and used by clinicians at hospitals in Cambridge in the United Kingdom and at Udine in Italy as well as by researchers at Oxford University with CERN acting as the central node.

The project’s success has led to interest from outside companies, with one Spanish firm, Helide, looking to deploy a commercial variant of the system in the region of Extremadura within a year.

“Helide is aiming to have a number of Grid boxes throughout the region that will enhance the ability of doctors to verify test results and obtain a second opinion and use of the clinical experience acquired by the Hospitals involved in the project. They then aim to scale it up in terms of what the system can do and the geographical area where it is used, expanding it to other areas of Spain and then Europe,” Le Goff says.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>