Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pillows - a hot bed of fungal spores

14.10.2005


Researchers at The University of Manchester funded by the Fungal Research Trust have discovered millions of fungal spores right under our noses – in our pillows.



Aspergillus fumigatus, the species most commonly found in the pillows, is most likely to cause disease; and the resulting condition Aspergillosis has become the leading infectious cause of death in leukaemia and bone marrow transplant patients. Fungi also exacerbate asthma in adults.

The researchers dissected both feather and synthetic samples and identified several thousand spores of fungus per gram of used pillow - more than a million spores per pillow.


Fungal contamination of bedding was first studied in 1936, but there have been no reports in the last seventy years. For this new study, which was published online today in the scientific journal Allergy, the team studied samples from ten pillows with between 1.5 and 20 years of regular use.

Each pillow was found to contain a substantial fungal load, with four to 16 different species being identified per sample and even higher numbers found in synthetic pillows. The microscopic fungus Aspergillus fumigatus was particularly evident in synthetic pillows, and fungi as diverse as bread and vine moulds and those usually found on damp walls and in showers were also found.

Professor Ashley Woodcock who led the research said: “We know that pillows are inhabited by the house dust mite which eats fungi, and one theory is that the fungi are in turn using the house dust mites’ faeces as a major source of nitrogen and nutrition (along with human skin scales). There could therefore be a ‘miniature ecosystem’ at work inside our pillows.”

Aspergillus is a very common fungus, carried in the air as well as being found in cellars, household plant pots, compost, computers and ground pepper and spices.

Invasive Aspergillosis occurs mainly in the lungs and sinuses, although it can spread to other organs such as the brain, and is becoming increasingly common across other patient groups. It is very difficult to treat, and as many as 1 in 25 patients who die in modern European teaching hospitals have the disease.

Immuno-compromised patients such as transplantation, AIDS and steroid treatment patients are also frequently affected with life-threatening Aspergillus pneumonia and sinusitis. Fortunately, hospital pillows have plastic covers and so are unlikely to cause problems, but patients being discharged home - where pillows may be old and fungus-infected - could be at risk of infection.

Aspergillus can also worsen asthma, particularly in adults who have had asthma for many years, and cause allergic sinusitis in patients with allergic tendencies. Constant exposure to fungus in bed could be problematic. It can also get into the lung cavities created by tuberculosis which affects a third of the world’s population, causing general ill-health and bleeding in the lung, as well as causing a range of plant and animal diseases.

Dr Geoffrey Scott, Chairman of the Fungal Research Trust which funded the study, said: “These new findings are potentially of major significance to people with allergic diseases of the lungs and damaged immune systems - especially those being sent home from hospital.”

Professor Ashley Woodcock added: “Since patients spend a third of their life sleeping and breathing close to a potentially large and varied source of fungi, these findings certainly have important implications for patients with respiratory disease - especially asthma and sinusitis.”

Jo Nightingale | alfa
Further information:
http://www.manchester.ac.uk/press

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>