Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A water tale for all seasons: When it comes to hydration and exercise, the system works

05.09.2005


A US Army lab found dehydration has a minimal effect in the cold, but cuts performance by 8% in temperate weather. It’s the difference between a 2 hour-30 minute and a 2:42 marathon. Plus, five “common sense” tips on hydration, exercise and weather

Dehydration has minimal effect in cold, but cuts performance by 8% as temperature rises; the difference between a 2:30 and a 2:42 marathon

Common sense" tips on hydration



For over 20 years, the U.S. Army Research Institute of Environmental Medicine has studied the effect of temperature and the environment on physical performance. According to Michael Sawka, chief of USARIEM’s Thermal and Mountain Medicine Division, "we’re filling in the data gaps regarding the interaction of temperature and hydration on physical performance so we can set guidelines to optimize results relevant not just to soldiers or navy divers, but to athletes, firefighters and hunters – anyone who’s in extreme environments without access to food or water for long periods."

Several recent USARIEM studies in the Journal of Applied Physiology describe experiments in both warm and cold temperatures. One report showed that dehydration reduces physical performance, in this case cycling, 8% in temperate/cool air (68 degrees Fahrenheit), but only 3% in a cold 36 degrees F. Furthermore it found that cold weather itself had an insignificant impact on physical performance, irrespective of hydration level.

A second USARIEM-generated study found that ingesting glycerol, a sweetish syrup, was an effective hyperhydration agent, causing "nearly twice as much fluid" to be retained after four hours of cold-air exposure (CAE) compared with water ingestion alone. "This study also demonstrates that hyperhydration doesn’t modify cardiovascular or thermoregulatory responses during resting CAE," the reported added.

How glycerol may hold water ’in reserve’ in body for use later

The implications of the second study are particularly interesting for prolonged outdoor exposure when rehydration is not possible. "Because glycerol is freely distributed in body water, hyperhydration with GI (glycerol ingestion) may better preserve the extravascular fluid volume, accounting for the improved TBW (total body water), compared with water alone. This extravascular ’reserve’ could later be called on during exercise or heat stress, when hydration becomes important to performance and thermoregulation," the paper noted.

Catherine O’Brien, lead author of the glycerol study, said "there’s a window of two to six hours where GI could be beneficial. That’s a narrow niche where it might be useful for instance for soldiers on short-range patrol with inadequate access to rehydration." The paper noted that the experiments supported earlier findings "suggesting that glycerol induced hyperhydration through renal reabsorption of water and glycerol. Finally, this study provides insight into the hormonal mechanisms of cold-induced diuresis and fluid shifts due to hyperhydration."

Next steps

"Whether the degree of hyperhydration" in the current study "is sufficient to improve physical performance in the cold or thermoregulation during subsequent body warming due to exercise or heat exposure remains to be demonstrated," the paper noted.

In addition, O’Brien said: "We learned previously that hydration doesn’t seem to affect susceptibility to frostbite. But soldiers and outdoorsmen are more affected by their hands and fingers getting stiff. We’re going to look at how physical performance such as manual dexterity can better be maintained in the cold."

Some dehydration shows no performance effect in cold, but does as temperature rises

It’s well recognized that athletes perform progressively better as the temperature falls from hot to cool. It is also known that dehydration worsens performance in the heat, but its effect in milder environments is not well understood. A USARIEM team led by Samuel N. Cheuvront found that dehydration by 3% of body weight had little adverse impact on cycling performance in the cold (36F), but markedly reduced performance in temperate air (68F).

"We induced a 3% body weight loss because that’s about how much water the average marathon runner loses," Cheuvront noted. The team found that while this much dehydration produced only a minor negative affect at 36F, at 68F it made a significant 8% cut in performance. "We measured performance as work performed (in kilojoules), but the real indicator is time: 8% over the course of a marathon is the difference between finishing in 2 hours 30 minutes or 2 hours 42 minutes – and that’s a big difference!" Cheuvront said.

He added a quick note of realism, though: "Remember that although we’re testing healthy and fit Army recruits, the average competitive runner’s performance might not drop as drastically." The other important finding in the experiment was that with hydration kept steady, cold in and of itself did not negatively impact performance.

Some elegant measures of "importance" and exertion

Interestingly, the researchers found that during exercise the subjects "thought" they were working at exactly the same rate of exertion, even though there was a major difference between their actual performances.

Another measure they used is called the "zone of indifference," which can indicate not just whether a finding is or is not "statistically significant, but if it’s biologically important or meaningful," Cheuvront said. "In this case the results were both statistically significant and meaningful," he added. The "spirit of this approach, most closely related to equivalence testing in the clinical sciences, has recently been championed as a performance interpretation tool for the exercise sciences by Dr. William G. Hopkins," the paper noted.

Next steps: "The preservation of endurance performance in cold air when hypohydrated may be explained by differences in cardiovascular function and oxygen uptake dynamics," the paper said. "Although the present experiment was not designed to assess the mechanism behind performance changes, the explanation is reasonable based on the work of others," it added.

Some ’common-sense’ tips on hydration

  • The Boy Scout adage still holds: "Check urine color. It should be relatively clear. If it’s dark, you need to drink more," O’Brien said.
  • "Although the 8-by-8 rule of drinking eight 8-ounce glasses of water a day is well recognized, is has almost no scientific basis. The recent Institute of Medicine report on water and electrolytes established an Adequate Intake (AI) for water of 3.7 liters/day for a normal adult male, but there is wide variation. Importantly, that 3.7 liters includes water from food and drink, including beverages like coffee or tea," Cheuvront noted.
  • Exercise fluid intakes should result in neither weight gain nor excessive weight loss (more than 2% of body weight). "Weighing oneself nude before and after exercise is the best way to gauge success around this recommendation," Cheuvront added.
  • Don’t drink too much, even in the heat: "We have this mistaken belief that more water is better. Not true. The Army has actually reduced the amount of water it gives in the heat," Sawka said.
  • Even in the cold, other recent USARIEM studies showed that "reduced body water levels (hypohydration) does not increase the risk of hypothermia or peripheral cold injury" such as frostbite, the Cheuvront paper reported.

    Mayer Resnick | EurekAlert!
    Further information:
    http://www.the-aps.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>