Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two proteins for the diagnosis of lung diseases

01.09.2005


Immunohistochemical analysis combined with fibronectin and tenascin enables the diagnosis of fibroproliferative lung diseases to be carried out with greater reliability. Fibroproliferative lung disease is a lung function pathology covering some 200 diseases, amongst the most common being pulmonary fibrosis. These results were provided by Ana Echegoyen Silanes when she recently defended her PhD thesis at the Public University of Navarra.



200 different diseases

Lung function pathology takes in some 200 diseases which have much radiological and pathological data in common, and which can greatly shorten the life of the patient, the last resort being a lung transplant. Amongst these diseases, the most common are the interstitial pneumonias, more popularly known as pulmonary fibrosis.


A histological characteristic common to fibroproliferative alterations, states Ana Echegoyen, is the structural remodelling of the lung due to the uncontrolled deposition of collagen tissue at the lung interstices thus leading to pulmonary fibrosis. This fibrosis may be produced by two different mechanisms, interstitial fibrosis and intra-alveolar fibrosis, the latter being key in the structural remodelling of the lung.

The study was then based on two, non-collagenous proteins from the extra-cellular matrix of the pulmonary interstices, fibronectin and tenascin in different fibroproliferative processes of alveolar damage.

More reliable diagnoses

So, fibronectin is a protein from the extra-cellular matrix present in healthy pulmonary interstices the expression of which augments with both acute as well as chronic pulmonary damage and, together with collagen, is an essential constituent of stable fibrous tissue in chronic lung damage.

Tenascin is a protein of the extra-cellular matrix absent in healthy lungs which appears in the very initial stages of pulmonary aggression, maintaining its presence during the process of fibrogenesis and decreasing when the tissue fibrosis is already established. This pattern of expression suggests that tenascin is a regulatory, non-structural protein of the acute stage that participates in the tissue structural remodelling.

Immunohistochemical analysis combined with fibronectin and tenascin enables the diagnosis of the type of fibroproliferative lung diseases to be carried out with greater reliability. For example, the detection of tenascin indicates the lesion is at an active stage and that the response to treatment of the condition could be more effective than if it were not present, thus indicating chronification. This knowledge is important in terms of prognosis and therapy given that, with functional lung pathology, diagnosis - usually based on small tissue samples - is sometimes complicated. This is because we as pathologists see alterations in shape and structure, changes that have to be complemented with radiological findings and clinical history. Thus, the protocolising of techniques that enable the carrying out of histopathological diagnoses with enhanced reliability is eminently positive.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>