Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model of Rett Syndrome displays reduced cortical activity

23.08.2005


Sacha Nelson of Brandeis University in Waltham, MA and Rudolf Jaenisch of the Whitehead Institute of Biomedical Research in Cambridge, MA and their colleagues report online today in the Proceedings of the National Academy of Sciences Early Edition that spontaneous neuronal activity is reduced in the cortex of a knockout mouse model for the childhood neurodevelopmental disorder, Rett Syndrome. The Rett Syndrome Research Foundation (RSRF) and the McKnight Foundation funded this project.



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

The nervous system consists of billions of neurons that communicate with each other. Neurons don’t touch and the gap between them is called a synapse. This gap is bridged by neurotransmitters that are released by the generation of electrical signals. Some neurotransmitters are excitatory and increase activity in the brain and others are inhibitory and decrease activity. In healthy brains, a balance between excitation and inhibition is essential for nearly all functions, including representation of sensory information, cognitive processes such as decision making, sleep and motor control.


The electrical signals that neurons generate can be measured using microelectrodes. Using a technique called, whole cell patch clamp, Vardhan Dani, a graduate student in Dr. Nelson’s lab and Qiang Chang a post doctoral fellow from Rudolf Jaenisch’s lab tested the electrical impulses in the cortex of the Rett Syndrome knockout mouse model. The cortex is one of the regions of the brain affected in patients with RTT. These mice are genetically manipulated so they lack the "Rett gene", MECP2. Like individuals with Rett Syndrome, they are seemingly normal at birth and begin to exhibit Rett-like behaviors by 5 weeks of age.

Interestingly, the groups found that the excitatory-inhibitory balance in the cortex of the mice was shifted towards inhibition (decreased brain activity). They surmise that this shift toward inhibition in the cortex and perhaps other brain regions could underlie some of the cognitive, motor, linguistic and social symptoms seen in RTT.

The spontaneous firing of L5 pyramidal neurons in 5 week-old mice was decreased 4-fold when compared to normal mice. This reduction is progressive, since two weeks earlier, in presymptomatic mice, the reduction was only 2-fold. This finding represents the first experimental evidence for a physiological abnormality that exists before symptoms appear.

"It’s important to note that since this defect is seen so early it suggests that the reduced cortical activity may be a primary cellular defect that may lead to other neuropathologies," shared Qiang Chang, co-first author on the paper.

Future work will focus on elucidating the mechanisms by which the lack of MECP2 leads to increased inhibition and reduced excitation. "The next step is to use a technique called paired recording to look at the properties of individual synaptic connections between pairs of cortical neurons to find out more precisely which connections change and how. We are also trying to understand which other neural genes are regulated by Mecp2 by measuring gene expression in neurons from knockout mice and their normal siblings," said Sacha Nelson, the corresponding author of the paper.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>