Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model of Rett Syndrome displays reduced cortical activity

23.08.2005


Sacha Nelson of Brandeis University in Waltham, MA and Rudolf Jaenisch of the Whitehead Institute of Biomedical Research in Cambridge, MA and their colleagues report online today in the Proceedings of the National Academy of Sciences Early Edition that spontaneous neuronal activity is reduced in the cortex of a knockout mouse model for the childhood neurodevelopmental disorder, Rett Syndrome. The Rett Syndrome Research Foundation (RSRF) and the McKnight Foundation funded this project.



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

The nervous system consists of billions of neurons that communicate with each other. Neurons don’t touch and the gap between them is called a synapse. This gap is bridged by neurotransmitters that are released by the generation of electrical signals. Some neurotransmitters are excitatory and increase activity in the brain and others are inhibitory and decrease activity. In healthy brains, a balance between excitation and inhibition is essential for nearly all functions, including representation of sensory information, cognitive processes such as decision making, sleep and motor control.


The electrical signals that neurons generate can be measured using microelectrodes. Using a technique called, whole cell patch clamp, Vardhan Dani, a graduate student in Dr. Nelson’s lab and Qiang Chang a post doctoral fellow from Rudolf Jaenisch’s lab tested the electrical impulses in the cortex of the Rett Syndrome knockout mouse model. The cortex is one of the regions of the brain affected in patients with RTT. These mice are genetically manipulated so they lack the "Rett gene", MECP2. Like individuals with Rett Syndrome, they are seemingly normal at birth and begin to exhibit Rett-like behaviors by 5 weeks of age.

Interestingly, the groups found that the excitatory-inhibitory balance in the cortex of the mice was shifted towards inhibition (decreased brain activity). They surmise that this shift toward inhibition in the cortex and perhaps other brain regions could underlie some of the cognitive, motor, linguistic and social symptoms seen in RTT.

The spontaneous firing of L5 pyramidal neurons in 5 week-old mice was decreased 4-fold when compared to normal mice. This reduction is progressive, since two weeks earlier, in presymptomatic mice, the reduction was only 2-fold. This finding represents the first experimental evidence for a physiological abnormality that exists before symptoms appear.

"It’s important to note that since this defect is seen so early it suggests that the reduced cortical activity may be a primary cellular defect that may lead to other neuropathologies," shared Qiang Chang, co-first author on the paper.

Future work will focus on elucidating the mechanisms by which the lack of MECP2 leads to increased inhibition and reduced excitation. "The next step is to use a technique called paired recording to look at the properties of individual synaptic connections between pairs of cortical neurons to find out more precisely which connections change and how. We are also trying to understand which other neural genes are regulated by Mecp2 by measuring gene expression in neurons from knockout mice and their normal siblings," said Sacha Nelson, the corresponding author of the paper.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>