Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s opioid receptors—or endorphin system—may hold key to treatment possibilities for bulimia

11.08.2005


First Imaging Study to Implicate Brain Opioids Could Explain Addictive Nature of Behavioral Disorder, Say Johns Hopkins Researchers

The role of the brain’s opioid receptor system—or endorphin system—may hold the key to understanding and treating bulimia nervosa, according to research reported in the Society of Nuclear Medicine’s August issue of the Journal of Nuclear Medicine.

"Involvement of the opioid system may explain the addictive quality of this behavioral disorder," said Angela Guarda, M.D., assistant professor of psychiatry at Johns Hopkins School of Medicine in Baltimore, Md. The first imaging study to implicate the opioid system in bulimia nervosa shows differences in women with bulimia compared to healthy women, added J. James Frost, M.D., Ph.D., professor of radiology and neuroscience at Johns Hopkins and co-author of "Regional ì-Opioid Receptor Binding in Insular Cortex Is Decreased in Bulimia Nervosa and Correlates Inversely With Fasting Behavior." In the study, eight women with bulimia were compared to healthy women of the same age and weight. Their brains were scanned using positron emission tomography (PET) after injection with the short-acting radioactive compound carfentanil, which binds to mu-opioid receptors in the brain, explained Frost. PET is a powerful medical imaging procedure that noninvasively uses special imaging systems and radioactive tracers to produce pictures of the function and metabolism of the cells in the body. He noted, "We found that mu-opioid receptor binding in bulimic women was lower than in healthy women in the left insular cortex. The insula is involved in processing taste, as well as the anticipation and reward of eating, and has been implicated in studies of other driven behavioral disorders, including drug addiction and gambling.”



Bulimia nervosa is a serious eating disorder marked by a destructive pattern of recurrent dieting, binging and vomiting to control one’s weight. "Patients feel trapped by this behavioral cycle suggesting something about it is rewarding,” said Guarda, “and, as with substance abuse, the course of bulimia is frequently chronic and relapsing."

Bulimia nervosa, which is 10 times more common in females than in males, affects 1–2 percent of adolescent girls and young women in the United States. Bulimia may become chronic and lead to serious health problems, including seizures, irregular heartbeat, dental erosion, swollen salivary glands, gastrointestinal irritation and electrolyte imbalances. In rare cases, it may be fatal. While the cause of bulimia nervosa is still unknown, research shows that certain brain chemicals may function abnormally in bulimia patients. This research may point to a molecular target for development of more effective treatments than those currently available. Frost indicated that medications that affect the brain’s opioid receptor system and approaches to treatment for substance abuse disorders may be helpful in treating bulimia.

Frost and Guarda co-authored "Regional ì-Opioid Receptor Binding in Insular Cortex Is Decreased in Bulimia Nervosa and Correlates Inversely With Fasting Behavior" with Badreddine Bencherif, M.D., Hayden T. Ravert, Ph.D., and Robert F. Dannals, Ph.D., department of radiology, and Carlo Colantuoni, Ph.D., department of neuroscience, all at Johns Hopkins University School of Medicine, Baltimore, Md.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>