Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s opioid receptors—or endorphin system—may hold key to treatment possibilities for bulimia

11.08.2005


First Imaging Study to Implicate Brain Opioids Could Explain Addictive Nature of Behavioral Disorder, Say Johns Hopkins Researchers

The role of the brain’s opioid receptor system—or endorphin system—may hold the key to understanding and treating bulimia nervosa, according to research reported in the Society of Nuclear Medicine’s August issue of the Journal of Nuclear Medicine.

"Involvement of the opioid system may explain the addictive quality of this behavioral disorder," said Angela Guarda, M.D., assistant professor of psychiatry at Johns Hopkins School of Medicine in Baltimore, Md. The first imaging study to implicate the opioid system in bulimia nervosa shows differences in women with bulimia compared to healthy women, added J. James Frost, M.D., Ph.D., professor of radiology and neuroscience at Johns Hopkins and co-author of "Regional ì-Opioid Receptor Binding in Insular Cortex Is Decreased in Bulimia Nervosa and Correlates Inversely With Fasting Behavior." In the study, eight women with bulimia were compared to healthy women of the same age and weight. Their brains were scanned using positron emission tomography (PET) after injection with the short-acting radioactive compound carfentanil, which binds to mu-opioid receptors in the brain, explained Frost. PET is a powerful medical imaging procedure that noninvasively uses special imaging systems and radioactive tracers to produce pictures of the function and metabolism of the cells in the body. He noted, "We found that mu-opioid receptor binding in bulimic women was lower than in healthy women in the left insular cortex. The insula is involved in processing taste, as well as the anticipation and reward of eating, and has been implicated in studies of other driven behavioral disorders, including drug addiction and gambling.”



Bulimia nervosa is a serious eating disorder marked by a destructive pattern of recurrent dieting, binging and vomiting to control one’s weight. "Patients feel trapped by this behavioral cycle suggesting something about it is rewarding,” said Guarda, “and, as with substance abuse, the course of bulimia is frequently chronic and relapsing."

Bulimia nervosa, which is 10 times more common in females than in males, affects 1–2 percent of adolescent girls and young women in the United States. Bulimia may become chronic and lead to serious health problems, including seizures, irregular heartbeat, dental erosion, swollen salivary glands, gastrointestinal irritation and electrolyte imbalances. In rare cases, it may be fatal. While the cause of bulimia nervosa is still unknown, research shows that certain brain chemicals may function abnormally in bulimia patients. This research may point to a molecular target for development of more effective treatments than those currently available. Frost indicated that medications that affect the brain’s opioid receptor system and approaches to treatment for substance abuse disorders may be helpful in treating bulimia.

Frost and Guarda co-authored "Regional ì-Opioid Receptor Binding in Insular Cortex Is Decreased in Bulimia Nervosa and Correlates Inversely With Fasting Behavior" with Badreddine Bencherif, M.D., Hayden T. Ravert, Ph.D., and Robert F. Dannals, Ph.D., department of radiology, and Carlo Colantuoni, Ph.D., department of neuroscience, all at Johns Hopkins University School of Medicine, Baltimore, Md.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>