Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical exercise system gives paralysis sufferers power to recover strength

03.08.2005


Electrical exercise system gives paralysis sufferers power to recover strength



People affected by paralysis could enjoy more independence, better health and a higher quality of life thanks to an innovative system designed to improve fitness and increase arm strength.

It uses electrical signals to stimulate movement in arm muscles where function has been lost, making it possible to work an arm-exercise machine (similar to an exercise bike but worked by the arms).


This enables people with paralysis to enjoy the health benefits of regular work-outs. For those with some function in their arms, it also helps them become strong enough to perform more activities unaided (wheelchair propulsion, moving from wheelchair to bed/bath, washing and eating etc). Aimed at people with injuries to the spinal cord, the system may be able to help those with paralysis caused by strokes or head injuries too.

This breakthrough is the result of a collaborative project undertaken by University of Glasgow engineers and Glasgow’s Queen Elizabeth National Spinal Injuries Unit with funding from the Engineering and Physical Sciences Research Council (EPSRC). A company is now commercialising the research with a view to a product launch in the coming months. The project team is also producing a video with EPSRC support to raise awareness of its work among people with paralysis and the healthcare community.

Using electrodes placed on the skin, small pulses of electricity are delivered to the nerves serving the biceps and triceps, replacing signals from the brain that can no longer reach the nerves. Controlled from a computer, the signals’ timing and strength can be adjusted to suit individual needs, eg when signs of muscle fatigue become apparent. The arm-exercise machine is linked into the computer system, enabling the effort needed to turn the machine to be adjusted.

Tetraplegic Sean Roake was one of the volunteers who worked with the project team during the research. His training programme, which consisted of three 20-30 minute sessions per week for several months, resulted in a 450% increase in muscle strength and a 50% increase in cardiopulmonary fitness. He says: “Everyday activities such as wheelchair-to-car transfers are so much easier now. I feel extremely positive knowing that I’ve taken responsibility for improving my health by exercising regularly using this system”.

Sylvie Coupaud, Research Assistant on the project and now a clinical scientist at the Spinal Injuries Unit, says: “By working closely with consultants at the unit, we identified the need for new exercise options in spinal cord injury. The technology we developed may offer a useful rehabilitation and home exercise tool for some people with tetraplegia”.

Notes for Editors:

The project ‘Development of Systems for Tetraplegic Arm Cranking using Functional Electrical Stimulation’ lasted two and a half years and received just over £122,000 of EPSRC funding.

The study investigated the feasibility of using functional electrical stimulation (FES) to deliver low-level pulses of electrical current to paralysed upper arm muscles and so enable arm exercise to be undertaken, provided that the relevant nerves are not damaged. FES was previously developed by the University of Glasgow with EPSRC support. A successful FES network bringing together groups from academia and industry has also been established.

A further EPSRC-funded project at the University of Glasgow is currently assessing the potential health benefits of applying FES technology to leg exercise.

Regular exercise can help people with paralysis reduce the risk of developing cardiovascular and other diseases associated with inactive lifestyles.

The video currently in production, ‘Engineering Research for Spinal Cord Injury’, is being developed in collaboration with the Spinal Injuries Association and Spinal Injuries Scotland. Due to be released in late autumn/early winter, it will highlight the benefits of research being carried out on the development of systems that use FES to restore function to paralysed muscle. The video includes a section on the research described in this press release. In addition to a full length version, two shorter versions of the video will be produced aimed specifically at (i) people with spinal cord injuries and (ii) the healthcare community.

Tetraplegia is the inability to move one’s arms and legs.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Lisa Green | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>