Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical exercise system gives paralysis sufferers power to recover strength

03.08.2005


Electrical exercise system gives paralysis sufferers power to recover strength



People affected by paralysis could enjoy more independence, better health and a higher quality of life thanks to an innovative system designed to improve fitness and increase arm strength.

It uses electrical signals to stimulate movement in arm muscles where function has been lost, making it possible to work an arm-exercise machine (similar to an exercise bike but worked by the arms).


This enables people with paralysis to enjoy the health benefits of regular work-outs. For those with some function in their arms, it also helps them become strong enough to perform more activities unaided (wheelchair propulsion, moving from wheelchair to bed/bath, washing and eating etc). Aimed at people with injuries to the spinal cord, the system may be able to help those with paralysis caused by strokes or head injuries too.

This breakthrough is the result of a collaborative project undertaken by University of Glasgow engineers and Glasgow’s Queen Elizabeth National Spinal Injuries Unit with funding from the Engineering and Physical Sciences Research Council (EPSRC). A company is now commercialising the research with a view to a product launch in the coming months. The project team is also producing a video with EPSRC support to raise awareness of its work among people with paralysis and the healthcare community.

Using electrodes placed on the skin, small pulses of electricity are delivered to the nerves serving the biceps and triceps, replacing signals from the brain that can no longer reach the nerves. Controlled from a computer, the signals’ timing and strength can be adjusted to suit individual needs, eg when signs of muscle fatigue become apparent. The arm-exercise machine is linked into the computer system, enabling the effort needed to turn the machine to be adjusted.

Tetraplegic Sean Roake was one of the volunteers who worked with the project team during the research. His training programme, which consisted of three 20-30 minute sessions per week for several months, resulted in a 450% increase in muscle strength and a 50% increase in cardiopulmonary fitness. He says: “Everyday activities such as wheelchair-to-car transfers are so much easier now. I feel extremely positive knowing that I’ve taken responsibility for improving my health by exercising regularly using this system”.

Sylvie Coupaud, Research Assistant on the project and now a clinical scientist at the Spinal Injuries Unit, says: “By working closely with consultants at the unit, we identified the need for new exercise options in spinal cord injury. The technology we developed may offer a useful rehabilitation and home exercise tool for some people with tetraplegia”.

Notes for Editors:

The project ‘Development of Systems for Tetraplegic Arm Cranking using Functional Electrical Stimulation’ lasted two and a half years and received just over £122,000 of EPSRC funding.

The study investigated the feasibility of using functional electrical stimulation (FES) to deliver low-level pulses of electrical current to paralysed upper arm muscles and so enable arm exercise to be undertaken, provided that the relevant nerves are not damaged. FES was previously developed by the University of Glasgow with EPSRC support. A successful FES network bringing together groups from academia and industry has also been established.

A further EPSRC-funded project at the University of Glasgow is currently assessing the potential health benefits of applying FES technology to leg exercise.

Regular exercise can help people with paralysis reduce the risk of developing cardiovascular and other diseases associated with inactive lifestyles.

The video currently in production, ‘Engineering Research for Spinal Cord Injury’, is being developed in collaboration with the Spinal Injuries Association and Spinal Injuries Scotland. Due to be released in late autumn/early winter, it will highlight the benefits of research being carried out on the development of systems that use FES to restore function to paralysed muscle. The video includes a section on the research described in this press release. In addition to a full length version, two shorter versions of the video will be produced aimed specifically at (i) people with spinal cord injuries and (ii) the healthcare community.

Tetraplegia is the inability to move one’s arms and legs.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Lisa Green | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>