Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical exercise system gives paralysis sufferers power to recover strength

03.08.2005


Electrical exercise system gives paralysis sufferers power to recover strength



People affected by paralysis could enjoy more independence, better health and a higher quality of life thanks to an innovative system designed to improve fitness and increase arm strength.

It uses electrical signals to stimulate movement in arm muscles where function has been lost, making it possible to work an arm-exercise machine (similar to an exercise bike but worked by the arms).


This enables people with paralysis to enjoy the health benefits of regular work-outs. For those with some function in their arms, it also helps them become strong enough to perform more activities unaided (wheelchair propulsion, moving from wheelchair to bed/bath, washing and eating etc). Aimed at people with injuries to the spinal cord, the system may be able to help those with paralysis caused by strokes or head injuries too.

This breakthrough is the result of a collaborative project undertaken by University of Glasgow engineers and Glasgow’s Queen Elizabeth National Spinal Injuries Unit with funding from the Engineering and Physical Sciences Research Council (EPSRC). A company is now commercialising the research with a view to a product launch in the coming months. The project team is also producing a video with EPSRC support to raise awareness of its work among people with paralysis and the healthcare community.

Using electrodes placed on the skin, small pulses of electricity are delivered to the nerves serving the biceps and triceps, replacing signals from the brain that can no longer reach the nerves. Controlled from a computer, the signals’ timing and strength can be adjusted to suit individual needs, eg when signs of muscle fatigue become apparent. The arm-exercise machine is linked into the computer system, enabling the effort needed to turn the machine to be adjusted.

Tetraplegic Sean Roake was one of the volunteers who worked with the project team during the research. His training programme, which consisted of three 20-30 minute sessions per week for several months, resulted in a 450% increase in muscle strength and a 50% increase in cardiopulmonary fitness. He says: “Everyday activities such as wheelchair-to-car transfers are so much easier now. I feel extremely positive knowing that I’ve taken responsibility for improving my health by exercising regularly using this system”.

Sylvie Coupaud, Research Assistant on the project and now a clinical scientist at the Spinal Injuries Unit, says: “By working closely with consultants at the unit, we identified the need for new exercise options in spinal cord injury. The technology we developed may offer a useful rehabilitation and home exercise tool for some people with tetraplegia”.

Notes for Editors:

The project ‘Development of Systems for Tetraplegic Arm Cranking using Functional Electrical Stimulation’ lasted two and a half years and received just over £122,000 of EPSRC funding.

The study investigated the feasibility of using functional electrical stimulation (FES) to deliver low-level pulses of electrical current to paralysed upper arm muscles and so enable arm exercise to be undertaken, provided that the relevant nerves are not damaged. FES was previously developed by the University of Glasgow with EPSRC support. A successful FES network bringing together groups from academia and industry has also been established.

A further EPSRC-funded project at the University of Glasgow is currently assessing the potential health benefits of applying FES technology to leg exercise.

Regular exercise can help people with paralysis reduce the risk of developing cardiovascular and other diseases associated with inactive lifestyles.

The video currently in production, ‘Engineering Research for Spinal Cord Injury’, is being developed in collaboration with the Spinal Injuries Association and Spinal Injuries Scotland. Due to be released in late autumn/early winter, it will highlight the benefits of research being carried out on the development of systems that use FES to restore function to paralysed muscle. The video includes a section on the research described in this press release. In addition to a full length version, two shorter versions of the video will be produced aimed specifically at (i) people with spinal cord injuries and (ii) the healthcare community.

Tetraplegia is the inability to move one’s arms and legs.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Lisa Green | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>