Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electrical exercise system gives paralysis sufferers power to recover strength


Electrical exercise system gives paralysis sufferers power to recover strength

People affected by paralysis could enjoy more independence, better health and a higher quality of life thanks to an innovative system designed to improve fitness and increase arm strength.

It uses electrical signals to stimulate movement in arm muscles where function has been lost, making it possible to work an arm-exercise machine (similar to an exercise bike but worked by the arms).

This enables people with paralysis to enjoy the health benefits of regular work-outs. For those with some function in their arms, it also helps them become strong enough to perform more activities unaided (wheelchair propulsion, moving from wheelchair to bed/bath, washing and eating etc). Aimed at people with injuries to the spinal cord, the system may be able to help those with paralysis caused by strokes or head injuries too.

This breakthrough is the result of a collaborative project undertaken by University of Glasgow engineers and Glasgow’s Queen Elizabeth National Spinal Injuries Unit with funding from the Engineering and Physical Sciences Research Council (EPSRC). A company is now commercialising the research with a view to a product launch in the coming months. The project team is also producing a video with EPSRC support to raise awareness of its work among people with paralysis and the healthcare community.

Using electrodes placed on the skin, small pulses of electricity are delivered to the nerves serving the biceps and triceps, replacing signals from the brain that can no longer reach the nerves. Controlled from a computer, the signals’ timing and strength can be adjusted to suit individual needs, eg when signs of muscle fatigue become apparent. The arm-exercise machine is linked into the computer system, enabling the effort needed to turn the machine to be adjusted.

Tetraplegic Sean Roake was one of the volunteers who worked with the project team during the research. His training programme, which consisted of three 20-30 minute sessions per week for several months, resulted in a 450% increase in muscle strength and a 50% increase in cardiopulmonary fitness. He says: “Everyday activities such as wheelchair-to-car transfers are so much easier now. I feel extremely positive knowing that I’ve taken responsibility for improving my health by exercising regularly using this system”.

Sylvie Coupaud, Research Assistant on the project and now a clinical scientist at the Spinal Injuries Unit, says: “By working closely with consultants at the unit, we identified the need for new exercise options in spinal cord injury. The technology we developed may offer a useful rehabilitation and home exercise tool for some people with tetraplegia”.

Notes for Editors:

The project ‘Development of Systems for Tetraplegic Arm Cranking using Functional Electrical Stimulation’ lasted two and a half years and received just over £122,000 of EPSRC funding.

The study investigated the feasibility of using functional electrical stimulation (FES) to deliver low-level pulses of electrical current to paralysed upper arm muscles and so enable arm exercise to be undertaken, provided that the relevant nerves are not damaged. FES was previously developed by the University of Glasgow with EPSRC support. A successful FES network bringing together groups from academia and industry has also been established.

A further EPSRC-funded project at the University of Glasgow is currently assessing the potential health benefits of applying FES technology to leg exercise.

Regular exercise can help people with paralysis reduce the risk of developing cardiovascular and other diseases associated with inactive lifestyles.

The video currently in production, ‘Engineering Research for Spinal Cord Injury’, is being developed in collaboration with the Spinal Injuries Association and Spinal Injuries Scotland. Due to be released in late autumn/early winter, it will highlight the benefits of research being carried out on the development of systems that use FES to restore function to paralysed muscle. The video includes a section on the research described in this press release. In addition to a full length version, two shorter versions of the video will be produced aimed specifically at (i) people with spinal cord injuries and (ii) the healthcare community.

Tetraplegia is the inability to move one’s arms and legs.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Lisa Green | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>