Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical cord-blood transplants save lives of babies with rare genetic disorder

19.05.2005


Umbilical cord-blood transplants save the lives of newborns with a rare genetic disorder called Krabbe’s disease and helps their brains develop more normally, a study led by researchers at the University of North Carolina at Chapel Hill and Duke University Medical Center concludes.

"Infants with Krabbe Disease lack an enzyme necessary for normal myelination of the brain and peripheral nervous system at the time when myelination is occuring most rapidly. The infants become irritable, loose all their developmental skills, become deaf and blind, have seizures and die. It is very painful for parents to watch their children deteriorate this rapidly. This study shows that finally there’s a treatment that offers hope," said Dr. Maria Luisa Escolar, the study’s lead author.

Escolar is an assistant professor in the UNC School of Medicine’s department of pediatrics. She also is director of the Program for Neurodevelopmental Function in Rare Disorders, part of UNC’s Clinical Center for the Study of Development & Learning. This program is dedicated to longitudinally track neurological and functional changes in patients with rare diseases. With a database of more than 450 multidisciplinary evaluations the program’s main goal is to describe the natural history of rare diseases and the effects of new treatments.



Results of the study will be published in the May 19 issue of the New England Journal of Medicine. The study’s senior author is Dr. Joanne Kurtzberg, director of Duke’s Pediatric Blood and Marrow Transplant Program.

The study demonstrates that umbilical cord-blood transplant is a life-saving treatment for newborns with infantile Krabbe’s disease, an inherited degenerative disorder that affects the nervous system, said Kurtzberg. Most infants with the disease die before reaching age 2. In addition, Kurtzberg added, the study adds to a growing body of evidence that cord blood can save children with other "lysosomal storage diseases." These include more than 45 diseases, such as Krabbe’s disease, Hurler syndrome, Adrenoleukodystrophy, metachromatic leukodystrophy, Tay-Sachs disease, Sandhoff disease and a host of others.

All the infants in the study who received cord-blood transplants as newborns are still alive, with the oldest being 6½ years old, up to four years after an untreated sibling with the same disorder had died. Moreover, most newborns who were treated before the onset of symptoms showed continual improvement in developmental skills and had age-appropriate mental and language skills.

"Time is of the essence in treating the children before symptoms progress and become irreversible," said Kurtzberg. "The diseases may be uncommon, but the cost to the child, their family and to society at large is enormous when one considers the burden of caring for a severely disabled child. It’s simply impossible to put a price on a child’s life."

The study also shows that newborns should be screened for Krabbe’s disease, Kurtzberg said. In current practice, they are not.

Dr. Mel Levine, director of UNC’s Clinical Center for the Study of Development & Learning, said Escolar and her colleagues are breaking new ground in uncovering the inborn lesions that impede learning and development in certain children. "Their research has lead to miraculous innovative interventions that can serve as a model for preventing the progression of brain damage in vulnerable babies and preschoolers," he added.

Worldwide, infantile Krabbe’s disease occurs in about one in 100,000 births. It is caused by a deficiency of the enzyme galactocerebrosidase, or GALC, which leads to a loss of myelin, a fatty covering that wraps around and protects nerve fibers in the brain. Without myelin, nerves in the brain and other parts of the body cannot function properly.

Previous studies have shown that individuals with late onset Krabbe’s disease benefited when transplanted with stem cells taken from bone marrow. However, banked umbilical-cord blood is much more readily available than bone marrow and can be used for infant stem cell transplants after they have been treated with chemotherapy.

In the study, 11 newborns diagnosed with Krabbe’s disease but showing no symptoms and 14 older infants with symptoms underwent transplantation of umbilical-cord blood from unrelated donors following chemotherapy. These infants were then evaluated periodically for up to six years.

Twenty-two of the 25 infants received cord-blood transplants at Duke University Medical Center; the other three were transplanted at hospitals in St. Louis; Grand Rapids, Mich.; and Montreal. Escolar analyzed the developmental trajectory of all infants and conducted pre and post transplant developmental evaluations in 10 newborns and all of the symptomatic patients that survived.

As of January 2005, all 11 newborns had survived for a median of 36 months, while six of the 14 symptomatic infants had survived for a median of 41 months. The survival rate among the newborns was better than among untreated control patients and the symptomatic infants. In addition, six of the newborns outlived their affected siblings by eight to 48 months.

Escolar demonstrates that the newborns had better neurological outcomes than both untreated infants and infants treated after the onset of symptoms. The newborns maintained normal vision and hearing and normal cognitive development, except for areas influenced by gross motor development. In contrast, the infants treated after symptom onset showed some stabilization of neurologic disease, but remained severely impaired.

Stephanie Crayton | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>