Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical cord-blood transplants save lives of babies with rare genetic disorder

19.05.2005


Umbilical cord-blood transplants save the lives of newborns with a rare genetic disorder called Krabbe’s disease and helps their brains develop more normally, a study led by researchers at the University of North Carolina at Chapel Hill and Duke University Medical Center concludes.

"Infants with Krabbe Disease lack an enzyme necessary for normal myelination of the brain and peripheral nervous system at the time when myelination is occuring most rapidly. The infants become irritable, loose all their developmental skills, become deaf and blind, have seizures and die. It is very painful for parents to watch their children deteriorate this rapidly. This study shows that finally there’s a treatment that offers hope," said Dr. Maria Luisa Escolar, the study’s lead author.

Escolar is an assistant professor in the UNC School of Medicine’s department of pediatrics. She also is director of the Program for Neurodevelopmental Function in Rare Disorders, part of UNC’s Clinical Center for the Study of Development & Learning. This program is dedicated to longitudinally track neurological and functional changes in patients with rare diseases. With a database of more than 450 multidisciplinary evaluations the program’s main goal is to describe the natural history of rare diseases and the effects of new treatments.



Results of the study will be published in the May 19 issue of the New England Journal of Medicine. The study’s senior author is Dr. Joanne Kurtzberg, director of Duke’s Pediatric Blood and Marrow Transplant Program.

The study demonstrates that umbilical cord-blood transplant is a life-saving treatment for newborns with infantile Krabbe’s disease, an inherited degenerative disorder that affects the nervous system, said Kurtzberg. Most infants with the disease die before reaching age 2. In addition, Kurtzberg added, the study adds to a growing body of evidence that cord blood can save children with other "lysosomal storage diseases." These include more than 45 diseases, such as Krabbe’s disease, Hurler syndrome, Adrenoleukodystrophy, metachromatic leukodystrophy, Tay-Sachs disease, Sandhoff disease and a host of others.

All the infants in the study who received cord-blood transplants as newborns are still alive, with the oldest being 6½ years old, up to four years after an untreated sibling with the same disorder had died. Moreover, most newborns who were treated before the onset of symptoms showed continual improvement in developmental skills and had age-appropriate mental and language skills.

"Time is of the essence in treating the children before symptoms progress and become irreversible," said Kurtzberg. "The diseases may be uncommon, but the cost to the child, their family and to society at large is enormous when one considers the burden of caring for a severely disabled child. It’s simply impossible to put a price on a child’s life."

The study also shows that newborns should be screened for Krabbe’s disease, Kurtzberg said. In current practice, they are not.

Dr. Mel Levine, director of UNC’s Clinical Center for the Study of Development & Learning, said Escolar and her colleagues are breaking new ground in uncovering the inborn lesions that impede learning and development in certain children. "Their research has lead to miraculous innovative interventions that can serve as a model for preventing the progression of brain damage in vulnerable babies and preschoolers," he added.

Worldwide, infantile Krabbe’s disease occurs in about one in 100,000 births. It is caused by a deficiency of the enzyme galactocerebrosidase, or GALC, which leads to a loss of myelin, a fatty covering that wraps around and protects nerve fibers in the brain. Without myelin, nerves in the brain and other parts of the body cannot function properly.

Previous studies have shown that individuals with late onset Krabbe’s disease benefited when transplanted with stem cells taken from bone marrow. However, banked umbilical-cord blood is much more readily available than bone marrow and can be used for infant stem cell transplants after they have been treated with chemotherapy.

In the study, 11 newborns diagnosed with Krabbe’s disease but showing no symptoms and 14 older infants with symptoms underwent transplantation of umbilical-cord blood from unrelated donors following chemotherapy. These infants were then evaluated periodically for up to six years.

Twenty-two of the 25 infants received cord-blood transplants at Duke University Medical Center; the other three were transplanted at hospitals in St. Louis; Grand Rapids, Mich.; and Montreal. Escolar analyzed the developmental trajectory of all infants and conducted pre and post transplant developmental evaluations in 10 newborns and all of the symptomatic patients that survived.

As of January 2005, all 11 newborns had survived for a median of 36 months, while six of the 14 symptomatic infants had survived for a median of 41 months. The survival rate among the newborns was better than among untreated control patients and the symptomatic infants. In addition, six of the newborns outlived their affected siblings by eight to 48 months.

Escolar demonstrates that the newborns had better neurological outcomes than both untreated infants and infants treated after the onset of symptoms. The newborns maintained normal vision and hearing and normal cognitive development, except for areas influenced by gross motor development. In contrast, the infants treated after symptom onset showed some stabilization of neurologic disease, but remained severely impaired.

Stephanie Crayton | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>