Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Number and quality of kidney transplants much greater if national matching program adopted


A collaboration between Johns Hopkins and Massachusetts Institute of Technology scientists has mathematically demonstrated that a national matching program for kidney paired donation, also called paired kidney exchange, would ensure the best possible kidney for the greatest number of recipients who have incompatible donors. Kidney paired donation (KPD) provides organs to patients who have a willing, designated donor who is not compatible. A kidney from such a donor is matched to -- and transplanted into -- the recipient of a second incompatible donor-patient pair, and vice versa. The transplants are performed simultaneously.

The researchers have developed an interactive Web site,, that provides more details and interactive demonstrations of the algorithm and its use in transplantation.

"Our findings demonstrate that a national pool of kidney donors and recipients, combined with new mathematical techniques for sorting through them to find the best possible organ matches, will not only allow more people to get the transplants they need, but will dramatically cut health care costs, reduce disruptive and unnecessary travel for patients, and insure that transplanted kidneys have the best possible chance of survival," said Dorry L. Segev, M.D., a surgeon at Johns Hopkins and lead author of a report published in the April 20, 2005, issue of the Journal of the American Medical Association.

"Even if only 7 percent of patients awaiting kidney transplantation participated in an optimized national KPD program, the health care system could save as much as $750 million," said Segev.

More than 60,000 people await kidney donation and are listed on the United Network of Organ Sharing (UNOS) recipient registry, and nearly one-third of patients with willing donors are excluded from kidney transplantation because of blood-type and other incompatibilities, according to the report.

Despite its promise, only 51 patients have received transplants via paired donation because just a handful of institutions are performing the procedures based on local or regional patient databases, added the authors.

"Clearly, a national matching program is the best solution for incompatible donors and recipients, but for such a program to be successful we need to make sure that all patients get the best possible match" said Segev.

Segev, in collaboration with his wife, Sommer E. Gentry, M.S., an applied mathematician at the Massachusetts Institute of Technology, and other colleagues developed a new kidney donor matching system, or algorithm, that uses a technology called optimization. This technology has already proved successful in facilitating tasks such as airline scheduling and online driving directions. They then created a mathematical model that uses simulated pools of incompatible donor/recipient pairs to determine if their new matching algorithm might improve matches that can be found in a small (regional) or large (national) pool. The researchers compared the optimized algorithm with the scheme currently used in some centers and regions. The model included simulated patients from the general community with characteristics drawn from distributions describing end-stage kidney disease patients eligible for kidney transplantation and live donors.

The researchers found that a national optimized matching algorithm would result in more transplants, better matches and more transplanted kidneys surviving at five years when compared with an extension of the currently used method to a national level. Highly sensitized patients, who are extremely difficult to match and typically wait almost seven years for a deceased donor kidney, would benefit six-fold from a national optimized algorithm (14.1 percent matched versus 2.3 percent). Furthermore, the results show that optimization would dramatically reduce the number of pairs required to travel (2.9 percent vs. 18.4 percent).

Another benefit of a national KPD model is that patients and doctors will be able to choose which priorities are highest for the patients in the system, added the authors. For example, individual patients can set their own priorities based on distance they are willing to travel or on the quality of the kidney matched to them.

Trent Stockton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>