Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer vaccine trial continues at UK’s Markey Cancer Center

06.04.2005


Two University of Kentucky researchers continue their work with a vaccine to prevent lung cancer recurrences in patients following primary treatment of the disease.



Vaccines are being developed with the hope of reducing the unacceptably high rates of recurrence and disease progression seen in the treated lung cancer population. The cancer vaccine program is now enrolling a second cohort of subjects to study the effects of the vaccine in lung cancer patients. The vaccine is delivered following conventional treatment with surgery, radiation therapy or chemotherapy and the patients evaluated for immune responses that could indicate clinical benefit.

Edward A. Hirschowitz, M.D., Associate professor of medicine, and John Yannelli, Ph.D., Associate professor of Microbiology and Immunology, both in the UK College of Medicine, are using white blood cells from the patients’ blood to make the vaccine. They then administer the vaccine to the patient which allows the patient’s immune system to recognize and destroy tumor cells that can lead to recurrences after cancer treatment.


"This trial is important in the fight against lung cancer because additional medical therapies are not generally recommended until recurrences are seen," said Hirschowitz. "We are using the window between definitive medical or surgical therapy and lung cancer recurrence to enhance the immune response to a cancer recurrence."

The vaccine in this study uses dendritic cells, the most potent immune inducing cells found in the human body. In the lab these cells can be grown in large numbers then programmed with tumor information that directs the immune system to recognize and kill tumor cells in the body.

"UK is in the forefront of cancer research and therapy with this study," said Yannelli. "Only in the past five years have scientists learned to grow these cells in large numbers and manipulate their biology in laboratory culture. As a result, we can experimentally culture these cells in the lab and inject patients with more of these potent cells to engineer immune responses to different diseases."

In the previous cohort the researchers had very positive biological results and patient outcomes. In this second group, the researchers hope to treat 30 new patients over a period of two years. Each patient receives two injections of the dendritic cells, one month apart. It takes seven days to make the vaccine. Following careful monitoring to insure the vaccine is safe, the antigen loaded dendritic cells are injected into the patient. The second dose is administered a month later.

Initially, the Kentucky Lung Cancer Tobacco Settlement Foundation gave the researchers $200,000 to start the project and an additional; $500,000 was secured from the Cancer Treatment Research Foundation. They have recently secured another grant for $700,000 to further their efforts.

Kentucky has the highest incidence of lung cancer in the country. "Kentucky has such a devastating problem, developing vaccines research here is really important. A seemingly endless stream of lung cancer patients seen in our clinics continually reinforces the importance of this research. " said Hirschowitz "UK is one of the prevailing lung cancer vaccine centers in the U.S."

Louise DuPont | EurekAlert!
Further information:
http://www.uky.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>