Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peer inside embryonic/fetal hearts to discover causes of congenital heart disease

05.04.2005


Doctor’s at Children’s Hospital of Pittsburgh are redefining early detection



Children’s Hospital of Pittsburgh Cardiologist Bradley B. Keller, MD, and his research team are discovering details in the lab that explain how the heart is formed in the embryo. This knowledge improves the chances of doctors identifying fetuses who can benefit from intervention to treat congenital defects.

Doctor’s in the Heart Center at Children’s are redefining what has typically been called early detection. With technologically advanced tools including echocardiography they are looking inside fetal hearts and spotting abnormalities months before babies are born.


Through fetal diagnosis, doctors can actually see the heart and valve structures and detect the most serious form of heart disease in children by 20 weeks of gestation, the mid-point in pregnancy.

In some cases, Dr. Keller turns to the embryo of a chick or a mouse to shed light on how the heart functions and how it acquires its normal structure during its earliest days. In his lab, the avian embryo is an experimental model capable of being modified to allow for the study of specific heart conditions.

For example, hypoplastic left heart syndrome is created by simply tying a small suture around the developing atrium, which alters how blood flows into the heart and reduces the flow on the left side. "If blood flow is reduced to the left side of the heart, the structures on that side of the heart will not grow and the embryo will have hypoplastic left heart syndrome – exactly as we see it in patients," said Dr. Keller, chief of cardiology at Children’s. "We can then identify the changes in structure and function associated with this condition and determine if we can reverse this condition by fetal intervention."

To get even more from such models, Children’s is participating in the development of new high-resolution imaging systems that allows scientists to peer inside the embryonic heart when it is a small as 2 millimeteres, measure blood flow, and visualize heart function prior to the completion of cardiac valve formation.

Using mice models, researchers are studying how interactions between the pregnant mother and embryo influence how the heart forms and functions. To do so, an operating room environment was created – replete with anesthesia, blood pressure monitoring, surgical techniques and imaging capabilities – to study the mother and embryo simultaneously and observe interactions, such as the effect of low oxygen or how certain medications taken by the mother affect developing heart function and embryo survival.

Researchers in Dr. Keller’s lab also are using heart muscle cells from the chick and mouse embryos to regenerate "tissue-engineered" heart tissues in order to understand how the mechanical environment triggers heart muscle cells to mature and divide. It is all part of learning more about the heart as a dynamic, moving element during development, when dividing cells are forming the heart while constantly exposed to stretching, twisting and other forces.

"Because our long-term goal is to repair the heart using a patient’s own cells and tissues, cell transplant, for example, we have to understand their native environment," Keller added.

Congenital heart disease is of particular interest to Dr. Keller and his team – who follow their patients from prior to birth well into adulthood. Improvements in general diagnostic cardiology and interventions that open up heart valves or close holes in the heart using catheters and minimally invasive techniques are helping young patients avoid major surgery.

Children’s doctors have made great strides in diagnosing problems with echocardiology, a safe, noninvasive procedure that uses high frequency sound waves to deliver a detailed picture of the heart. Children’s also is expanding its interventional cardiac catheterization lab to take advantage of new ways to use catheters as therapeutic devices and is partnering with local biotechnology companies to develop novel approaches that optimize both software and the catheters used for interventional procedures.

At Children’s, researchers are studying tissue engineering for ways to regulate how heart muscle cells grow and mature, hoping that someday such science can be used to repair abnormalities in the heart of children. But, detection is the first step.

For more information about Dr. Keller or his research please visit the Children’s Hospital of Pittsburgh’s Web site at www.chp.edu. Enter the Press Room for more reporter-friendly information.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>