Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peer inside embryonic/fetal hearts to discover causes of congenital heart disease

05.04.2005


Doctor’s at Children’s Hospital of Pittsburgh are redefining early detection



Children’s Hospital of Pittsburgh Cardiologist Bradley B. Keller, MD, and his research team are discovering details in the lab that explain how the heart is formed in the embryo. This knowledge improves the chances of doctors identifying fetuses who can benefit from intervention to treat congenital defects.

Doctor’s in the Heart Center at Children’s are redefining what has typically been called early detection. With technologically advanced tools including echocardiography they are looking inside fetal hearts and spotting abnormalities months before babies are born.


Through fetal diagnosis, doctors can actually see the heart and valve structures and detect the most serious form of heart disease in children by 20 weeks of gestation, the mid-point in pregnancy.

In some cases, Dr. Keller turns to the embryo of a chick or a mouse to shed light on how the heart functions and how it acquires its normal structure during its earliest days. In his lab, the avian embryo is an experimental model capable of being modified to allow for the study of specific heart conditions.

For example, hypoplastic left heart syndrome is created by simply tying a small suture around the developing atrium, which alters how blood flows into the heart and reduces the flow on the left side. "If blood flow is reduced to the left side of the heart, the structures on that side of the heart will not grow and the embryo will have hypoplastic left heart syndrome – exactly as we see it in patients," said Dr. Keller, chief of cardiology at Children’s. "We can then identify the changes in structure and function associated with this condition and determine if we can reverse this condition by fetal intervention."

To get even more from such models, Children’s is participating in the development of new high-resolution imaging systems that allows scientists to peer inside the embryonic heart when it is a small as 2 millimeteres, measure blood flow, and visualize heart function prior to the completion of cardiac valve formation.

Using mice models, researchers are studying how interactions between the pregnant mother and embryo influence how the heart forms and functions. To do so, an operating room environment was created – replete with anesthesia, blood pressure monitoring, surgical techniques and imaging capabilities – to study the mother and embryo simultaneously and observe interactions, such as the effect of low oxygen or how certain medications taken by the mother affect developing heart function and embryo survival.

Researchers in Dr. Keller’s lab also are using heart muscle cells from the chick and mouse embryos to regenerate "tissue-engineered" heart tissues in order to understand how the mechanical environment triggers heart muscle cells to mature and divide. It is all part of learning more about the heart as a dynamic, moving element during development, when dividing cells are forming the heart while constantly exposed to stretching, twisting and other forces.

"Because our long-term goal is to repair the heart using a patient’s own cells and tissues, cell transplant, for example, we have to understand their native environment," Keller added.

Congenital heart disease is of particular interest to Dr. Keller and his team – who follow their patients from prior to birth well into adulthood. Improvements in general diagnostic cardiology and interventions that open up heart valves or close holes in the heart using catheters and minimally invasive techniques are helping young patients avoid major surgery.

Children’s doctors have made great strides in diagnosing problems with echocardiology, a safe, noninvasive procedure that uses high frequency sound waves to deliver a detailed picture of the heart. Children’s also is expanding its interventional cardiac catheterization lab to take advantage of new ways to use catheters as therapeutic devices and is partnering with local biotechnology companies to develop novel approaches that optimize both software and the catheters used for interventional procedures.

At Children’s, researchers are studying tissue engineering for ways to regulate how heart muscle cells grow and mature, hoping that someday such science can be used to repair abnormalities in the heart of children. But, detection is the first step.

For more information about Dr. Keller or his research please visit the Children’s Hospital of Pittsburgh’s Web site at www.chp.edu. Enter the Press Room for more reporter-friendly information.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>