Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers peer inside embryonic/fetal hearts to discover causes of congenital heart disease


Doctor’s at Children’s Hospital of Pittsburgh are redefining early detection

Children’s Hospital of Pittsburgh Cardiologist Bradley B. Keller, MD, and his research team are discovering details in the lab that explain how the heart is formed in the embryo. This knowledge improves the chances of doctors identifying fetuses who can benefit from intervention to treat congenital defects.

Doctor’s in the Heart Center at Children’s are redefining what has typically been called early detection. With technologically advanced tools including echocardiography they are looking inside fetal hearts and spotting abnormalities months before babies are born.

Through fetal diagnosis, doctors can actually see the heart and valve structures and detect the most serious form of heart disease in children by 20 weeks of gestation, the mid-point in pregnancy.

In some cases, Dr. Keller turns to the embryo of a chick or a mouse to shed light on how the heart functions and how it acquires its normal structure during its earliest days. In his lab, the avian embryo is an experimental model capable of being modified to allow for the study of specific heart conditions.

For example, hypoplastic left heart syndrome is created by simply tying a small suture around the developing atrium, which alters how blood flows into the heart and reduces the flow on the left side. "If blood flow is reduced to the left side of the heart, the structures on that side of the heart will not grow and the embryo will have hypoplastic left heart syndrome – exactly as we see it in patients," said Dr. Keller, chief of cardiology at Children’s. "We can then identify the changes in structure and function associated with this condition and determine if we can reverse this condition by fetal intervention."

To get even more from such models, Children’s is participating in the development of new high-resolution imaging systems that allows scientists to peer inside the embryonic heart when it is a small as 2 millimeteres, measure blood flow, and visualize heart function prior to the completion of cardiac valve formation.

Using mice models, researchers are studying how interactions between the pregnant mother and embryo influence how the heart forms and functions. To do so, an operating room environment was created – replete with anesthesia, blood pressure monitoring, surgical techniques and imaging capabilities – to study the mother and embryo simultaneously and observe interactions, such as the effect of low oxygen or how certain medications taken by the mother affect developing heart function and embryo survival.

Researchers in Dr. Keller’s lab also are using heart muscle cells from the chick and mouse embryos to regenerate "tissue-engineered" heart tissues in order to understand how the mechanical environment triggers heart muscle cells to mature and divide. It is all part of learning more about the heart as a dynamic, moving element during development, when dividing cells are forming the heart while constantly exposed to stretching, twisting and other forces.

"Because our long-term goal is to repair the heart using a patient’s own cells and tissues, cell transplant, for example, we have to understand their native environment," Keller added.

Congenital heart disease is of particular interest to Dr. Keller and his team – who follow their patients from prior to birth well into adulthood. Improvements in general diagnostic cardiology and interventions that open up heart valves or close holes in the heart using catheters and minimally invasive techniques are helping young patients avoid major surgery.

Children’s doctors have made great strides in diagnosing problems with echocardiology, a safe, noninvasive procedure that uses high frequency sound waves to deliver a detailed picture of the heart. Children’s also is expanding its interventional cardiac catheterization lab to take advantage of new ways to use catheters as therapeutic devices and is partnering with local biotechnology companies to develop novel approaches that optimize both software and the catheters used for interventional procedures.

At Children’s, researchers are studying tissue engineering for ways to regulate how heart muscle cells grow and mature, hoping that someday such science can be used to repair abnormalities in the heart of children. But, detection is the first step.

For more information about Dr. Keller or his research please visit the Children’s Hospital of Pittsburgh’s Web site at Enter the Press Room for more reporter-friendly information.

Melanie Finnigan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>