Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers peer inside embryonic/fetal hearts to discover causes of congenital heart disease


Doctor’s at Children’s Hospital of Pittsburgh are redefining early detection

Children’s Hospital of Pittsburgh Cardiologist Bradley B. Keller, MD, and his research team are discovering details in the lab that explain how the heart is formed in the embryo. This knowledge improves the chances of doctors identifying fetuses who can benefit from intervention to treat congenital defects.

Doctor’s in the Heart Center at Children’s are redefining what has typically been called early detection. With technologically advanced tools including echocardiography they are looking inside fetal hearts and spotting abnormalities months before babies are born.

Through fetal diagnosis, doctors can actually see the heart and valve structures and detect the most serious form of heart disease in children by 20 weeks of gestation, the mid-point in pregnancy.

In some cases, Dr. Keller turns to the embryo of a chick or a mouse to shed light on how the heart functions and how it acquires its normal structure during its earliest days. In his lab, the avian embryo is an experimental model capable of being modified to allow for the study of specific heart conditions.

For example, hypoplastic left heart syndrome is created by simply tying a small suture around the developing atrium, which alters how blood flows into the heart and reduces the flow on the left side. "If blood flow is reduced to the left side of the heart, the structures on that side of the heart will not grow and the embryo will have hypoplastic left heart syndrome – exactly as we see it in patients," said Dr. Keller, chief of cardiology at Children’s. "We can then identify the changes in structure and function associated with this condition and determine if we can reverse this condition by fetal intervention."

To get even more from such models, Children’s is participating in the development of new high-resolution imaging systems that allows scientists to peer inside the embryonic heart when it is a small as 2 millimeteres, measure blood flow, and visualize heart function prior to the completion of cardiac valve formation.

Using mice models, researchers are studying how interactions between the pregnant mother and embryo influence how the heart forms and functions. To do so, an operating room environment was created – replete with anesthesia, blood pressure monitoring, surgical techniques and imaging capabilities – to study the mother and embryo simultaneously and observe interactions, such as the effect of low oxygen or how certain medications taken by the mother affect developing heart function and embryo survival.

Researchers in Dr. Keller’s lab also are using heart muscle cells from the chick and mouse embryos to regenerate "tissue-engineered" heart tissues in order to understand how the mechanical environment triggers heart muscle cells to mature and divide. It is all part of learning more about the heart as a dynamic, moving element during development, when dividing cells are forming the heart while constantly exposed to stretching, twisting and other forces.

"Because our long-term goal is to repair the heart using a patient’s own cells and tissues, cell transplant, for example, we have to understand their native environment," Keller added.

Congenital heart disease is of particular interest to Dr. Keller and his team – who follow their patients from prior to birth well into adulthood. Improvements in general diagnostic cardiology and interventions that open up heart valves or close holes in the heart using catheters and minimally invasive techniques are helping young patients avoid major surgery.

Children’s doctors have made great strides in diagnosing problems with echocardiology, a safe, noninvasive procedure that uses high frequency sound waves to deliver a detailed picture of the heart. Children’s also is expanding its interventional cardiac catheterization lab to take advantage of new ways to use catheters as therapeutic devices and is partnering with local biotechnology companies to develop novel approaches that optimize both software and the catheters used for interventional procedures.

At Children’s, researchers are studying tissue engineering for ways to regulate how heart muscle cells grow and mature, hoping that someday such science can be used to repair abnormalities in the heart of children. But, detection is the first step.

For more information about Dr. Keller or his research please visit the Children’s Hospital of Pittsburgh’s Web site at Enter the Press Room for more reporter-friendly information.

Melanie Finnigan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>